SOLUTIONS \Rightarrow CHAPTERS $1-2$ Umulative Test $(1,2,4,5,7,10,11,13,14)$
MULTIPLE CHOICE

1. Kari is studying the number of handshakes among groups of people. Based on groups of 2,3, and 4 people with 1,3, and 6 handshakes, she conjectures that the number of handshakes follows the sequence of triangular numbers. Kari then discovers that there are 10 handshakes among 5 people and 15 handshakes among 6 people. What can you say, based only on the new evidence, about Kari's conjecture?
A. The conjecture is valid.
B. The new evidence supports the conjecture.
C. The conjecture is not valid.
D. The new evidence does not support the conjecture.

2. Kevin claims that the midpoints of any quadrilateral, when joined, form a rhombus. Which of the following is a counterexample to Kevin's conjecture?
A.

B.

C.

D.

Note: A rhombus is an equilateral parallelogram.
4. This proof seems to show that $4=2$. Where is the error?

Let $a=2 b, b \neq 0$.

$$
\begin{aligned}
a^{2} & =2 a b & & \text { A. Multiply by } a . \\
a^{2}-4 b^{2} & =2 a b-4 b^{2} & & \quad\left(\text { Subtract } 4 b^{2} .\right) \\
(a+2 b)(a-2 b) & =2 b(a-2 b) & & \text { B. Factor. } \\
a+2 b & =2 b & & \text { C. Divide by }(a-2 b) . \\
4 b & =2 b & & \text { (Substitute } a=2 b .) \\
4 & =2 & & \text { D. Divide by } b .
\end{aligned}
$$

* If $a=2 b$,
then $a-2 b=0$.
(You cannot

5. Which of the following pairs of angles are corresponding angles?
(A.) $\angle a$ and $\angle e$
B. $\angle b$ and $\angle h$
C. $\angle a$ and $\angle d$
D. $\angle b$ and $\angle c$

6. What is the measure of each interior angle of a regular nonagon?
A. 280°
B. 40°
C. 147.3°
D. 140°
\rightarrow nonagon \Rightarrow 9 sides

$$
\begin{aligned}
\text { Measure of each interior angle } & =\frac{180^{\circ}(n-2)}{n} \\
& =\frac{180^{\circ}(9-2)}{9} \\
& =\frac{180^{\circ}(7)}{9} \\
& =140^{\circ}
\end{aligned}
$$

10. Determine each angle measure.

$$
\begin{array}{lll}
\angle a=72^{\circ} & \angle b=82^{\circ} & \angle c=98^{\circ} \\
\angle d=\underline{98^{\circ}} & \angle e=72^{\circ} & \angle f=72^{\circ}
\end{array}
$$

11. Determine the following angle measures in the regular pentagon $A B C D E$.

$$
\begin{array}{llll}
\angle E A B=108^{\circ} & \angle A E F=36^{\circ} & \angle E A F=72^{\circ} & \angle F A B=\underline{36}^{\circ} \\
\angle E F A=72^{\circ} \\
\angle A F B=108^{\circ} & \angle E B A=\underline{36^{\circ}} & \angle D A C=36^{\circ} & \angle A D C=72^{\circ} \\
\angle A C D=72^{\circ}
\end{array}
$$

Use your results to identify two pairs of similar triangles within $A B C D E F$.

$\triangle A C D \sim \triangle E A F$
$\triangle A B E \sim \triangle F A B$

* In a pentagon, each interior angle $=\frac{180^{\circ}(n-2)}{n}$

$$
\begin{aligned}
& =\frac{180^{\circ}(5-2)}{5} \\
& =\frac{180^{\circ}(3)}{5} \\
& =108 .
\end{aligned}
$$

13. a) Make a conjecture about the sum of two consecutive perfect squares.

The sum of two consecutive perfect squares is always an odd number.
b) List evidence that supports or disproves your conjecture.

$$
\begin{aligned}
& 2^{2}+3^{2} \quad 3^{2}+4^{2} \quad 20^{2}+21^{2} \\
& =4+9 \quad 9+16=400+441 \\
& =13(\text { odd })=25(\text { odd })=841(\text { odd })
\end{aligned}
$$

c) If possible, prove your conjecture.

Let $S=$ sum
Let $x=$ any integer.

$$
\begin{aligned}
& S= x^{2}+(x+1)^{2} \\
& S= x^{2}+(x+1)(x+1) \\
& S=x^{2}+x^{2}+1 x+1 x+1 \\
& S=2 x^{2}+2 x+1 \\
& S=2\left(x^{2}+x\right)+1 \quad \text { (This is always an odd \#) } \\
& \quad \text { Even }
\end{aligned}
$$

14. The measure of an exterior angle of a triangle is the sum of the measures of the two non-adjacent interior angles. Use this fact and $\triangle A B C$ to prove that the sum of the interior angle measures of a triangle is 180°.

$$
\begin{aligned}
& \quad \angle D A B=\angle B+\angle C \text { (Given) } \\
& \angle D A B+\angle B A C=180^{\circ} \text { (Supplementary Angles) } \\
& \quad \angle D A B=180^{\circ}-\angle B A C \\
& \left(180^{\circ}-\angle B A C\right)=\angle B+\angle C \\
& \quad 180^{\circ}=\angle B A C+\angle B+\angle C \text { (Substitution) }
\end{aligned}
$$

