1) 31 200 J

- 7) 0.0456 J/g °C
- 2) -31 700 J
- 8) 424 g

3) 120°C

9) 2.60 J/g °C

4) 28°C

10) 6.21 J

5) 1100 J

11) 42.6 L

6) 14 900 J

Homework - Worksheet

PHASE CHANGE AND ENTHALPY

ENTHALPY (H) - The total internal (potential) energy and kinetic energy of a system under constant pressure. ⇒Enthalpy is usually expressed in kJ.

ENTHALPY CHANGE (Δ H) - A change under constant pressure where the surroundings of a system absorb energy or release it to the system.

PHASE CHANGE - is a change in the state of matter without a change in the chemical composition of the system. Ex. $H_2O_{(1)} \longrightarrow H_2O_{(g)}$

⇒always involve a change in energy but never involve a change in temperature.

Question:

- (i) What is the temperature where water just starts boiling?
- (ii) What is the temperature when water is boiling violently?
- (iii) If energy is still going into the water and the temperature is not increasing, where is the energy going?

Consider melting ice to water and then boiling water to steam:

heat heat
$$H_2O_{(s)} -----> H_2O_{(l)} -----> H_2O_{(g)}$$

MOLAR ENTHALPY

For any system:

- an exothermic change involves a decrease in enthalpy
- ⇒gives off energy to the surroundings
- ⇒ ∆H is negative. Solidification, condensation
- an endothermic change involves an increase in enthalpy.
- ⇒takes in energy from the surroundings
- ⇒ ∆H is positive. Fusion, vaporization

The enthalpies for substances undergoing phase changes have been measured experimentally. (TABLE 17.3 p. 522)

- enthalpies are reported as molar enthalpies and are expressed as kJ/mol.

$$H_{\text{vap}} = 40.7 \frac{\text{kJ}}{\text{mol}}$$

	H mol H fus	Hvap mol
HzO	6.01	40.7
Cl2		

Endothermic Phase Changes

- the molar enthalpy of fusion (H_{fus}) represents the quantity of heat that the substance absorbs per mole as it changes state from **solid to liquid**.
- the molar enthalpy of vaporization (H_{vap}) represents the quantity of heat that the substance absorbs per mole as it changes state from **liquid to gas**.

Exothermic Phase Changes

- the molar enthalpy of condensation (H_{cond}) represents the quantity of heat that the substance releases per mole as it changes state from **gas to liquid**
- the molar enthalpy of solidification (H_{solid}) represents the quantity of heat that the substance releases per mole as it changes state from **liquid to solid**.

$$\Delta \mathbf{H}_{\text{fus}} = -\Delta \mathbf{H}_{\text{solid}}$$

$$\Delta \mathbf{H}_{\text{vap}} = - \Delta \mathbf{H}_{\text{cond}}$$

Example

If 500. g of $CCl_2F_{2(1)}$ is vaporized at SATP, find the enthalpy change of the system ($H_{vap} = 34.99 \text{ kJ/mol}$).

$$m=500.9$$

$$CC1_2F_2$$

$$H_{tap}=3+99 \frac{kJ}{mol}$$

$$AH_{tap}=500g$$

$$3+99 \frac{kJ}{mol}$$

$$120.91g/mol$$

$$AH_{tap}=7$$

$$AH_{tap}=145 \frac{kJ}{kJ}$$

Calculate the energy change required to condense 150.g of steam to water. ($H_{vap} = 40.7 \text{ kJ/mol}$)

$$m=150$$
 g $AHcond = nHcond$
 H_{20} $AHcond = \left(\frac{150.9}{18.029 \text{ lmol}}\right)^{-40.7 \text{ kJ}}$
 $AHcond = ?$
 $Hcond = -40.7 \text{ kJ}$
 $AHcond = -339 \text{ kJ}$

Worksheet