3. A water wheel has a radius of 10 m .3 m of the wheel is submerged under water. If the wheel makes one revolution in 360 degrees and the bucket starts at the center and goes up, find:
a) $A=10 \mathrm{~m}$
d) $D=7 \mathrm{~m}$
b) $P=360^{\circ}$
e) $\max =17 \mathrm{~m}$
c) $K=\frac{360}{360}=1$
f) min $=-3 m$
g) $y=10 \sin [1(x)]+7$

i)

$$
\begin{aligned}
& \text { (1) } 40^{\circ} \rightarrow y=10 \sin [1(40)]+7 \\
& y=13.43 \mathrm{~m} \\
& \text { (2) } 110^{\circ} \rightarrow y=10 \sin [1(10)]+7 \\
& y=16.39 \mathrm{~m} \\
& \text { (3) } 200^{\circ} \rightarrow y=10 \sin [1(200))+7 \\
& y=3.58 \mathrm{~m}
\end{aligned}
$$

j) $y=11$

$$
\begin{aligned}
11 & =10 \sin [1(x)]+1 \\
\frac{4}{10} & =\frac{10 \sin [x]}{10} \\
* 0.4 & =\sin x * \quad \sin ^{-1}(0.4)=23.58^{\circ} \\
23.58^{\circ} & =x
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) a) } \\
& \begin{array}{l}
P=16 \\
K=22.5 \\
A=4 \\
D=0 \\
C=0
\end{array} \\
& \text { b) } y=-4 \sin [2,5(x)]
\end{aligned}
$$

a) $y=50 \cos [16.36(x-2)]$
b) $y=15 \cos [16.3(x-2)] * 50 \times 0.3=15$
4. A water wheel is defined by the equation $y=7 \cos [18(x)]+4$

$$
\begin{array}{lll}
A=7 & K=18 \quad C=0 \quad D=4 \\
& P=\frac{360}{18}=20
\end{array}
$$

a) $A_{m p}=7$
$\max : 4+7=11$
b) Period $=20 \quad \min : 4-7=-3$

d) $3 m$ is submerged
e) Radius $=A_{\text {mp }}=7$

$$
\text { f) } \begin{aligned}
& y=7 \cos [18(x)]+4 \\
& 5=7 \cos [18 x]+4) \\
& \frac{1}{7}=\frac{7 \cos (18 x)}{7} \\
& 0.1428=\cos (18 x) \\
& \cos ^{-1}(0.1488)=18 x \\
& \frac{81.8}{18}=\frac{18 x}{18} \\
& 4.5 s=x
\end{aligned}
$$

