Chemical Bonding

Valence electrons

electrons in the highest occupied energy level of an element's atoms.

- determines the chemical properties of an element
- only electrons used in chemical bonds
- for a representative element, the number of valence electrons corresponds to the group number

Electron dot structure

diagrams showing the valence electrons as dots

Table 7.1

Electron Dot Structure of Some Group A Elements								
	Group							
Period	1A	2 A	3A	4A	5 A	6 A	7 A	8 A
1	H.							He:
2	Li-	·Be·	·B·	Ċ	N	Ö	· E	Ne
3	Na [.]	·Mg·	Al	Si	.P.	S	CI	Ar
4	K.	Ca	Ga	Ge	As	Se	Br	:Kr

Octet Rule

To form compounds, atoms usually achieve the electron configuration of a noble gas.

At the highest occupied energy level: ns²np⁶

Formation of Cations

Cations lose valence electrons to form positively charged ions

Na
$$\longrightarrow$$
 Na⁺ + e⁻

$$Mg \longrightarrow Mg^{2+} + 2e^{-}$$

Transition Metals will attempt to form a pseudo noble-gas configuration.

Ne 15²25²2p⁶
Ar 15²25²2p⁶35²3p⁶

152252pb3,23p

Formation of Anions Anions gain electrons to produce a negatively charged ion.

CI
$$1s^22s^22p^63s^23p^5 \xrightarrow{+e^-}$$
 CI $1s^22s^22p^63s^23p^6$

Ionization:

$$0 + 2e^{-} \longrightarrow O^{2-}$$

Homework

p. 193 #3-11