SoluTIONS \Rightarrow Practice Questions
1 a) $f(x)=-x^{2}+4 x+1 \quad A(0,1) \quad B(3,-4)$

b) $f(x)=-x^{2}+4 \quad A(3,-6) \quad B(-2,0)$

$$
\begin{aligned}
& \Rightarrow A(3,-6) \\
& \operatorname{lS}^{x} y \\
& \begin{array}{lr}
\text { LbS } & \text { RmS } \\
y & -x^{2}+4
\end{array} \\
& =-6=-(3)^{2}+4 \\
& =-9+4 \\
& =-5
\end{aligned}
$$

Since $L . S \neq R \cdot S$, point A $(3,-6)$ does not satisfy the equation

$$
\begin{aligned}
& \} \Rightarrow B(-2,0) \\
& x, y \\
& \begin{array}{c}
\text { RmS } \\
-x^{2}+4
\end{array} \\
& =-(-2)^{2}+4 \\
& =-4+4 \\
& =0
\end{aligned}
$$

Since L.S $=$ R.S, point $B(-2,0)$ satisfies the equation.

$$
\begin{aligned}
& \text { C) } f(x)=3 x^{2}+2 x-4 \quad A(2,12) \quad B(5,81) \\
& \Rightarrow A(2,12) \\
& \text { LbS } \\
& \text { y } \begin{array}{c}
\\
3
\end{array} x^{2}+2 x-4 ~=3(2)^{2}+2(2)-4 \\
& =12=3(4)+4-4 \\
& =12+4-4 \\
& =16-4 \\
& =12 \\
& \text { Since } L . S=\text { R.S, point } \\
& \text { A }(2,12) \text { satisfies } \\
& \text { the equation. }
\end{aligned}
$$

(2) $f(x)=-2 x^{2}+4$

$$
y=-2 x^{2}+4
$$

a)

$$
\begin{array}{|c|c|}
\hline x & y \\
\hline-\partial & -4 \\
\hline-1 & \partial \\
\hline 0 & 4 \\
\hline 1 & \partial \\
\hline \partial & -4 \\
\hline
\end{array}
$$

b) Domain: $\{x \in R\}$ arrows

Range: $\{y \leq 4, y \in R\}$

- Vertex. $(0,4)$

Axis of Symetry: $x=0$

- Zeros. $(-1.4,0)+(1.4,0)$ or $x= \pm 1.4$ Maximum $(0,4)$
C) Opens Down

Ra)

$y=$	$-2 x^{2}+4$
x	y
-2	-4
-1	2
0	4
1	2
2	-4

b) Domain: $\{x \mid x \in R\}$

c) Opens Downward

Range: $\{y \mid y \leq 4, y \in R\}$
Vertex: $(0,4)$
Zeros of the Function: $x=-1.4$ and $x=1.4$
Maximum Value: $(0,4)$ or $y=4$

Homework
(1)
a) $f: x \rightarrow 3 x^{2}$
$y=3 x^{\text {D }}$ (Quadratic)
b)

$$
\begin{aligned}
& g: x \rightarrow 2 x^{3}-5 \\
& y=2 x^{3}-5 \quad \text { (cubic) }
\end{aligned}
$$

(4) Express in: $y=a x^{2}+b x+c$
a)

$$
\begin{aligned}
& y=3(x-1)^{2} \\
& y=3(x-1)(x-1) \\
& y=3\left(x^{2}-x-x+1\right) \\
& y=3\left(x^{2}-2 x+1\right) \\
& y=3 x^{2}-6 x+3
\end{aligned}
$$

