(a)
$$N_{2g_3} + 3H_{2g_3} = 2NH_{3g_3}$$

$$0.45M \quad 1.10M \quad ? \quad K = 1.7 \times 10^{-2}$$

$$K_{-} \left[\frac{NH_{31}}{3} \right]^2 = \left[\frac{NH_{3g_3}}{1} \right]^2 + \left[\frac{NH_{3g_3}}{1} \right]^2 = \left[\frac{NH_{3g_3}}{1} \right]^2 + \left[\frac{NH_{3g_3}}{1} \right]^2 = 0.10M$$

Change in Equilibrium Conditions

A complete description of an equilibrium state of a system must indicate temperature, pressure, composition and concentrations of all entities. (A percent reaction or equilibrium constant may be part of the the description.)

There are as many states of equilibrium of a chemical system as there are combinations of properties.

Le Chatelier's Principle

If a stress is applied to a system in dynamic equilibrium, the system changes in a way that relieves the stress, to re-achieve equilibrium.

- is a method of predicting in which direction an equilibrium will shift if the factors describing an equilibrium state (temperature, pressure, concentration) are changed.
- is useful in order to choose conditions which maximize the production of the desired product.

catalysts speed up the time to reach equilibrium but do not affect the final position of an equilibrium

Summary p. 492: Variables Affecting Chemical Equilibria

Concentration

I.
$$3NO_{2(g)} + H_2O_{(l)} \longleftrightarrow 2HNO_{3(aq)} + NO_{(g)}$$

$$\Rightarrow remove\ NO_{(g)} \qquad \text{shift right}$$

$$\Rightarrow odd\ NO_{2(g)} \qquad \text{shift right}$$
Towns a vector s

Temperature

II.
$$2\text{NaCl}_{(s)} + \text{H}_2\text{SO}_{4(l)} + \text{energy} \longleftrightarrow 2\text{HCl}_{(g)} + \text{Na}_2\text{SO}_{4(s)}$$

$$\Rightarrow \text{heat system}$$

$$\text{increase T}$$
*think of energy as an entity in the equation

III.
$$2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)} + \text{energy}$$

$$\Rightarrow \text{cool system (low T)} \longrightarrow \text{heat system}$$

$$PV=nRT$$
 $P=\frac{nRT}{V}$

Pressure / Volume

$$IV. \hspace{0.5cm} 2SO_{2(g)} \hspace{0.1cm} + \hspace{0.1cm} O_{2(g)} \hspace{0.1cm} \longleftarrow \hspace{0.1cm} 2SO_{3(g)}$$

- ⇒decrease volume (increase pressure) →
- ⇒ increase volume (decrease pressure) ←

$$3 \\ 3NO_{2(g)} + H_2O_{(l)} \longleftrightarrow 2HNO_{3(aq)} + NO_{(g)}$$

$$increase volume$$

$$(decrease pressure)$$

Exercise #6 p. 555

Worksheet