Math 11

Rate of Change – Review #1

1. Which of the following graphs has a constant rate of change?

d)

2. In which graph is the rate of change increasing?

a)

c)

Semester Two

- 3. The scores on tests from January until June:
 - a) Increased
- (b) Decreased
- c) Remained Constant d) Do not have enough info.
- S 100 C 90
- O R 70 E S 60

Jan Feb Mar Apr May June

4.

Seconds after start of race	0	10	20	30	40	50
Distance travelled (m)	0	50	80	120	180	250

The average rate of change from 10 seconds to 50 seconds was:

(a) 5 m/s

- b) 10 m/s
- c) $\frac{1}{5}$ m/s
- d) 40 m/s

5.

Hours	Pay
0	0
1	12
2	28
3	44
4	57

The average rate of change from 1 hour to 4 hours is:

- a) \$45/h

c) \$57/h

ar to 4 hours is:

$$(1,12)(4,57)$$

AROC= $57-12$
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12

6.

The average rate of change from interval A to B is:

- (a) \$10 000/year
- b) -\$15 000/year

- c) \$60 000/year

 - A (2,30) B (5,60)
- d) \$30 000/year
- AROC = 60-30 5-2 = 30 = 10 = >810000/year
- 7. Which of the following graphs describes average rate of change?

d)

- 9. The rate of change at a maximum or a minimum value is always:
 - a) Negative
- (b) Zero
- c) Positive
- d) Imaginary

10.
$$h = -2(t-3)^2 + 4$$

A) Find the average rate of change from t = 1 to t = 5.

$$\begin{array}{lll} t = 1 & t = 5 \\ h = -2(1-3)^2 + 4 & h = -2(5-3)^2 + 4 \\ = -2(-2)^2 + 4 & = -2(2)^2 + 4 \\ = -2(4) + 4 & = -2(4) + 4 \\ = -8 + 4 & = -8 + 4 \\ = -4 \\ (1, -4) & (5, -4) \end{array}$$

$$\begin{array}{lll} AROC = -4 - 4 \\ \hline 5 - 1 \\ \hline = 0 \\ 4 \\ \hline = 0 \\ m/s \end{array}$$

B) Find the instantaneous rate of change at t = 2.

B) Find the instantaneous rate of change at t = 2.

$$t = 1.9$$

$$h = -2(1.9-3)^2 + 4$$

$$= -2(-0.9)^2 + 4$$

$$= -2(-0.9)^2 + 4$$

$$= -2(1.21) + 4$$

$$= -2(0.81) + 4$$

$$= -2(0.81) + 4$$

$$= -2.42 + 4$$

$$= 1.58$$

$$(1.9, 1.58)$$

IROC = $0.38 - 1.58$

$$= -2(0.81) + 4$$

$$= 2.38$$

$$= -1.62 + 4$$

$$= 2.38$$

$$(3.1, 2.38)$$

- 11. The following chart shows the change in temperature of a freezer when it is turned on.
 - A) Find the average rate of change from 2 to 5 hours.

(2,6)	AROC = -45-6	3	
(2,6)	11100- 400	4	
(5, -45)	5-2	5	
,	= -51		
	3		
	= -17 degree	es per hou	۲.

Hour	TemperatureD,
1	11 -5 D ₂
2	6 < -11 < -6
3	-5 < -17 6
4	-22 _23
5	-45

* Constant

B) Use the table to determine the equation that best models the data.

$$y = -3x^2 + 4x + 10$$

12.
$$h = -4.9t^2 + 19.2t + 400$$

QUADRATIC! $y = \frac{-3\chi^2 + 4\chi + 10}{2}$ Remember,

you need to

At what time is the instantaneous rate of change equal to zero?

We shall a superior of equation first

Therefore, the