(4) a) $f(x)=\frac{x^{2}-5 x-6}{x+1}=\frac{(x-6)(x+1)}{(x+1)}=x-6$
(1)Roots: (2V.A. (3) O.A. (4) Holes: (5) y int $x=6$ None $y=x-6 \quad x=-1 \quad y=-6$

$$
\begin{aligned}
& \text { (1) d) } \frac{\frac{\partial}{x}+\frac{3}{x y}}{\frac{2}{x y}+\frac{3}{y}} \rightarrow \frac{\frac{2 y+3}{x y}}{\frac{2+3 x}{x y} 5} \\
& \rightarrow \frac{\partial y+3}{x y} \cdot \frac{x y}{\partial+3 x} \rightarrow \frac{\partial y+3}{\partial+3 x} \quad \begin{array}{l}
x \neq 0,-2 / 3 \\
y \neq 0
\end{array} \\
& 2+3 x=0 \\
& 3 x=-2 \\
& x=-\frac{2}{3} \\
& \frac{x y \frac{\frac{\partial}{x}+\frac{3}{x y}}{x y}}{x y \frac{\partial}{x y}+\frac{3}{y} x y} \rightarrow \frac{2 y+3}{\partial+3 x} \quad \begin{array}{l}
x \neq 0,-2 / 3 \\
y \neq 0
\end{array} \\
& \text { (2) c) }(\sqrt{3 x+15})^{2}=(1+\sqrt{18+x})^{2} \\
& 3 x+15=1+2 \sqrt{18+x}+18+x \\
& 3 x+15=(19)+x)+2 \sqrt{18+x} \\
& 2 x-4=2 \sqrt{18+x} \\
& 2(x-2)=2 \sqrt{18+x} \\
& (x-2)^{2}=(\sqrt{18+x})^{2} \\
& x^{2}-4 x+4=18+x \\
& x^{2}-5 x-14=0 \\
& (x-7)(x+2)=0 \\
& x=7 \quad x=-2
\end{aligned}
$$

(4) b) $f(x)=\frac{x^{2}-2 x-3}{x^{2}+6 x+8}=\frac{(x-3)(x+1)}{(x+2)(x+4)}$
(1) roots

$$
x=-1,3 \quad x=-4,-2
$$

(3) H.A. (4) Holes: $y=1 \quad$ None
(5) yint

$$
y=-3 / 8
$$

Check Behaviour near V.A.

$$
\begin{aligned}
& x=-4 \\
& \lim _{x \rightarrow-4^{-}} f(x)=+\infty \\
& \lim _{x \rightarrow-4^{+}} f(x)=-\infty \\
& x=-2 \\
& \lim _{x \rightarrow-2^{-}} f(x)=-\infty \\
& \lim _{x \rightarrow-2^{+}} f(x)=+\infty
\end{aligned}
$$

(4)c) $f(x)=\frac{x^{2}-4}{x^{2}-9}=\frac{(x+2)(x-2)}{(x+3)(x-3)}$
(1) Roots: (3)V.A. (3) H.A. (4) Holes. (5) y int $x= \pm 2 \quad x= \pm 3 \quad y=1 \quad$ None $\quad y=4 / 9$
Check the behaviour near the V.A.

$$
\begin{aligned}
& x=-3 \\
& \lim _{x \rightarrow-3^{-}} f(x)=+\infty \\
& \lim _{x \rightarrow-3^{+}} f(x)=-\infty \\
& x=3 \\
& \lim _{x \rightarrow 3^{-}} f(x)=-\infty \\
& \lim _{x \rightarrow 3^{+}} f(x)=+\infty
\end{aligned}
$$

