Arrhenius Theory

Acid: H+

Base: OH-

Bronsted-Lowry Theory

Acid: H+ donor

Rase: H+ acceptor

$$H^{+}$$
 H^{+}
 H^{+

$$HS_{(00)}^{-} + H_{2}Q_{0} = S_{(00)}^{2-} + H_{3}D_{(00)}^{+}$$

Water Equilibrium

Conductivity is due to the presence of ions. For water:

$$H_2O_{(l)} <==> H^+_{(aq)} + OH^-_{(aq)}$$

- therefore $K = [\underline{H}^+] [\underline{OH}^-]$ is very small $[H_2O]$
- slight conductivity shows that equilibrium greatly favors water molecules (less than 2 H⁺ per billion water)
- therefore the concentration of water in pure water and in dilute aqueous solutions is essentially constant and can be combined with the equilibrium constant to produce a new constant called the *Ion Product Constant*

Ionization Constant for water (ion product constant)

$$K_w = [H^+] [OH^-] = 1.0 \times 10^{-14}$$
 at SATP

Since $[H^+]$ and $[OH^-]$ are found in 1:1 ratio $(H_2O_{(l)} <==> H^+_{(aq)} + OH^-_{(aq)})$

$$[H^{+}_{(aq)}] = [OH^{-}_{(aq)}] = 1.0 \text{ x } 10^{-7} \text{ mol/L in } \textbf{neutral} \text{ solutions.}$$

<u>Arrhenius's Theory</u> - acid is a substance that ionizes water t produce H⁺ ions.

- additional ions produced by the acid increases the H⁺ concentration in the water. (more acid, more H⁺)

Therefore acids always have a $[H^+] > 10^{-7}$ mol/L

Basic solutions produce a [OH⁻] greater than 10⁻⁷ mol/L

K_w can be used to calculate either [H⁺] or [OH⁻]

since
$$\mathbf{K}_{\mathbf{w}} = [\mathbf{H}^{+}] [\mathbf{O}\mathbf{H}^{-}]$$
 then $[\mathbf{H}^{+}] = \mathbf{K}_{\mathbf{w}} / [\mathbf{O}\mathbf{H}^{-}]$

and
$$[OH^{-}] = K_{w}/[H^{+}]$$

pH and pOH

$$pH + pOH = 14.00$$

$$pH = -log[H^{+}_{(aq)}] pOH = -log[OH^{-}_{(aq)}]$$

$$[H^{+}_{(aq)}] = 10^{-pH} [OH^{-}_{(aq)}] = 10^{-pOH}$$

Ex. Calculate the pH of a solution where $[H^{+}_{(aq)}] = 3.24 \times 10^{-4} M$.

Ex. Calculate the concentration of hydroxide ions in a solution with a pOH of 10.14.

$$\begin{bmatrix}
 OH_{eq_1} \end{bmatrix} = 10^{-pOH}$$

$$\begin{bmatrix}
 OH_{eq_1} \end{bmatrix} = 10^{-10.14}$$

$$\begin{bmatrix}
 OH_{eq_1} \end{bmatrix} = 7.2 \times 10^{-1} \text{ M}$$

Strong Acids

Calculate the concentration of the hydroxide ions, pH and pOH of a 0.15 mol/L solution of hydrochloric acid at 25°C.

Strong acids will always completely ionize

Ionic Hydroxides

Calculate the hydrogen ion concentration in a 0.25 mol/L solution of barium hydroxide.

$$Ba(OH)_{2(s)}$$
 \longrightarrow $Ba_{(m)}^{2+} + 2OH_{(m)}^{-}$ 0.50 mol/L