(4) a) $f(x)=\frac{x^{2}-5 x-6}{x+1}=\frac{(x-6)(x+1)}{(x+1)}=x-6$
(1)Roots: (2V.A. (3) O.A. (4)Holes: (5) y int $x=6 \quad$ None $y=x-6 \quad x=-1 \quad y=-6$

(4) b) $f(x)=\frac{x^{2}-2 x-3}{x^{2}+6 x+8}=\frac{(x-3)(x+1)}{(x+2)(x+4)}$
(1) roots

$$
x=-1,3 \quad x=-4,-2
$$

(3) H.A. (4) Holes:
$y=1 \quad$ None
(5) yint

$$
y=-3 / 8
$$

Check Behaviour near V.A.

$$
\begin{aligned}
& x=-4 \\
& \lim _{x \rightarrow-4^{-}} f(x)=+\infty \\
& \lim _{x \rightarrow-4^{+}} f(x)=-\infty \\
& x=-2 \\
& \lim _{x \rightarrow-2^{-}} f(x)=-\infty \\
& \lim _{x \rightarrow-2^{+}} f(x)=+\infty
\end{aligned}
$$

(4)c) $f(x)=\frac{x^{2}-4}{x^{2}-9}=\frac{(x+2)(x-2)}{(x+3)(x-3)}$
(1) Roots: (3)V.A. (3) H.A. (4) Holes. (5) y int $x= \pm 2 \quad x= \pm 3 \quad y=1 \quad$ None $\quad y=4 / 9$
Check the behaviour near the V.A.

$$
\begin{aligned}
& x=-3 \\
& \lim _{x \rightarrow-3^{-}} f(x)=+\infty \\
& \lim _{x \rightarrow-3^{+}} f(x)=-\infty \\
& x=3 \\
& \lim _{x \rightarrow 3^{-}} f(x)=-\infty \\
& \lim _{x \rightarrow 3^{+}} f(x)=+\infty
\end{aligned}
$$

(1)d)

$$
\begin{aligned}
& \frac{\frac{\partial}{x}+\frac{3}{x y}}{\frac{\partial}{x y}+\frac{3}{y}} \rightarrow \frac{\frac{2 y+3}{x y}}{\frac{\partial+3 x}{x y}} \rightarrow \frac{\partial y+3}{x y} \cdot \frac{x y}{\partial+3 x}
\end{aligned} \rightarrow
$$

(2) c)

$$
\left.\begin{aligned}
& (\sqrt{3 x+15})^{2}=(1+\sqrt{18+x})^{2} \\
& 3 x+15=(19+x+2 \sqrt{18+x} \\
& 2 x-4=2 \sqrt{18+x} \\
& \frac{2(x-2)}{2}=\frac{2 \sqrt{18+x}}{2} \\
& (x-2)^{2}=(\sqrt{18+x})^{2} \\
& x^{2}-4 x+4=18+x \\
& x^{2}-5 x-14=0 \\
& (x-7)(x+2)=0 \\
& x-7=0 \\
& x=7
\end{aligned} \right\rvert\, x+2=-20
$$

(2) e)

$$
\left.\begin{aligned}
& |2 x-7| \geq 15 \\
& 2 x-7 \geq 15 \\
& 2 x \geq 22 \\
& x \geq 11
\end{aligned} \right\rvert\, \begin{aligned}
& 2 x-7 \leq-15 \\
& x \leq-8 \\
&
\end{aligned}
$$

(4) b) $f(x)=\frac{x^{2}-2 x-3}{x^{2}+6 x+8}=\frac{(x-3)(x+1)}{(x+4)(x+2)}$
(1) Roots:
(2) yint:
(3) $V A^{\circ}$.
(4) WA: © Holes.

$$
\begin{gathered}
x=-1,3 \\
(-1,0)+(3,0)
\end{gathered}
$$

($0,-3 / 8$)

$$
f(-3)=\frac{(-6)(-2)}{(1)(-1)}=-12
$$

(2) f) $\quad 12>|x-5|>-8$

$$
\begin{array}{l|l}
12>x-5>-8 & 12>-(x-5)>-8 \\
-3>x>-3 & 12>-x-5)>-8 \\
7>-x>-13 \\
-7<x<17 & \\
& -12<x-5<8 \\
& -7<x<13
\end{array}
$$

