Know your Powers!

$$3^{x} = 33$$

Remember:

$$\frac{6}{0} \times \alpha = \frac{6+4}{0} = \frac{10}{0}$$

$$\frac{6}{0} \times \alpha = \frac{6-4}{0} = \frac{3}{0}$$

$$(\frac{6}{0})^4 = \frac{34}{0}$$

$$\lambda_x = \lambda_s$$

(a)
$$\frac{15.3^{2}}{5} = \frac{5}{15}$$

$$3^{3x-3} = \frac{1}{3}$$

$$X = 1$$

$$5 \times 2$$

$$\frac{\left(3^{3}\right)^{x}}{\left(5^{3}\right)^{9x-1}}=3^{x+4}$$

$$\frac{3^{3x}}{3^{4x-3}} = 3^{x+4}$$

$$3^{3\times - (4\times -3)} = 3^{\times +4}$$

$$3^{3x-4x+8} = 3^{x+4}$$

$$(X=-1)$$

	ANSWERS > E	xercise5
1.	$2^{2x+5} = 2^{x-6}$ $2x+5 = x-6$	Since the bases are the
	$\chi = -11$	Same, the exponents must be the same!
2.	$\lambda_{3x}^{3x} = 8$ $\lambda_{3x}^{3x} = \lambda_{3}$	3. $2^{2x-5} = (32)(2^{x+2})$ $2^{2x-5} = (2^5)(2^{x+2})$ $2^{2x-5} = 2^{5+x+2}$ $2^{2x-5} = 2^{x+7}$
	$\frac{3x}{3} = \frac{3}{3}$	$2^{2x-5} = 2^{5+x+2}$ $2^{2x-5} = 2^{x+7}$
	$\chi = 1$	2x-5 = x+7 $x = 12$

4.
$$5^{-x-4} = 125^{2x}$$
 $5.(16)(2^{x-4}) = (64)(2^{3x+4})$
 $5^{-x-4} = (5^3)^{2x}$ $(2^4)(2^{x-4}) = (2^6)(2^{3x+4})$
 $5^{-x-4} = 5^{6x}$ $2^{4+x-4} = 2^{6+3x+4}$
 $-x-4 = 6x$ $2^x = 2^{3x+10}$
 $-4 = 7x$ $x = 3x+10$
 $-2x = 10$
 $-4 = x$ $x = -5$

6.
$$27^{x-5} = 9^{2x+5}$$
 7. $4^x = 1$
 $(3^3)^{x-5} = (3^2)^{2x+5}$ $4^x = 4^\circ$
 $3^{3x-15} = 3^{4x+10}$ $\chi = 0$
 $3x-15 = 4x+10$
 $-25 = x$

8.
$$\left(\frac{1}{4}\right)^{x+3} = 2^{-3x+5}$$

 $\left(\frac{1}{2^2}\right)^{x+3} = 2^{-3x+5}$
 $\left(\frac{1}{2^2}\right)^{x+3} = 2^{-3x+5}$

$$\begin{array}{lll}
9 \cdot \left(\frac{1}{125}\right)^{3\chi-9} &= \left(\frac{1}{5}\right)^{5\chi-8} & 10 \cdot \frac{1}{3\lambda} \cdot \left(\frac{1}{16}\right)^{\chi+6} &= 2^{-7} \cdot \left(\frac{1}{2}\right)^{5\chi+2} \\
\left(\frac{1}{5^3}\right)^{3\chi-9} &= \left(\frac{1}{5}\right)^{5\chi-8} & \frac{1}{2^5} \cdot \left(\frac{1}{2^4}\right)^{\chi+6} &= 2^{-7} \cdot \left(2^{-1}\right)^{5\chi+2} \\
\left(5^{-3}\right)^{3\chi-9} &= \left(5^{-1}\right)^{5\chi-8} & \left(2^{-5}\right) \left(2^{-4}\right)^{\chi+6} &= \left(2^{-7}\right) \left(2^{-5\chi-2}\right) \\
5^{-9\chi+27} &= 5^{-5\chi+8} & \left(2^{-5}\right) \left(2^{-4\chi-24}\right) &= 2^{-7+(-5\chi-2)} \\
-9\chi+27 &= -5\chi+8 & 2^{-5+(-4\chi-24)} &= 2^{-7-5\chi-2} \\
\frac{19}{4} &= \frac{44\chi}{4} & 2^{-2q-4\chi} &= 2^{-q-5\chi} \\
\frac{19}{4} &= \chi & -2q-4\chi &= -q-5\chi \\
\frac{19}{4} &= \chi & -2q-4\chi &= -q-5\chi \\
\chi &= 20
\end{array}$$

11.
$$7^{x}+11=60$$
 12. $15 \cdot 3^{2x-3}=5$ 13. $48=6(2)^{x-1}$
 $7^{x}=49$ $3^{2x-3}=5$ $48=(2)^{x-1}$
 $7^{x}=7^{2}$ $8=(2)^{x-1}$
 $8=(2)^{x-1}$
 $3^{2x-3}=1$ $3=(2)^{x-1}$
 $3^{2x-3}=3^{-1}$ $3=x-1$
 $2x-3=-1$ $4=x$
 $2x=2$
 $2x=2$
 $2x=3$

14.
$$8(2)^{x+3} = 128$$

 $(2)^{x+3} = 128$
 8
 $(2)^{x+3} = 16$
 $(2)^{x+3} = 2^{4}$
 $(2)^{x+3} = 4$
 $(2)^{x+3} = 4$