ANSWERS => AVERAGE RATE OF CHANGE

2. AVERAGE RATE OF CHANGE => AROC

- 3. If the cost is \$20 per shirt, they sell 60 shirts For every \$5 per shirt increase, they sell 10 less shirts.
- a) If they raise the price from \$20 to \$35, they will sell 50 shirts.

For every \$1 increase in price, they will Sell 2 fewer whirts.

c) If the shirts are \$35, they will sell 50 shirts. If the shirts are \$30, they will sell 40 shirts.

AROC =
$$50 \text{ shirts} - 40 \text{ shirts}$$

= 10 shirts
= $-2 \text{ shirts}/\$1$

When the price is increased from \$25 to \$30, for every \$1 increase in price, they will still sell 2 fewer shirts.

b) It is difficult to find the average speed during the first 5 hours as We only have specific information regarding 4 hours after the start of the trip and 7 hours after the start of the trip.

You could only estimate using the values given as a guide!

d) We have already found the average speed during the first 2 hours, 4 hours, and 10 hours in Part(a). Let's find the average speed during the first hour and the first 7 hours:

Therefore, using all of the available information, we know that from:

Hour 1 to Hour 2, the speed increased from 80 km/h to 87.5 km/h.

Hour 2 to Hour 4, the speed decreased from 87.5 Km/h to 81.05 Km/h.

Hour 4 to Hour 7, the speed increased from 81.25 Km/h to 85.7 Km/h.

Hour 7 to Hour 10, the speed decreased from 85.7 Km/h to 85 Km/h.

- d) The distance -time relationship is not linear since the increase during the first hour is 80km but it is not 160km during the next two hours.
 - To find out if the distance-time relationship is quadratic you could input the two "lists" into the graphing calculator and "check".

 Once you determine the "quadratic" equation and graph it, a parabola is not formed

The distance-time relationship is therefore not quadratic either.