Chain Rule:

$$
\begin{aligned}
& \text { (4) } G(x)=\sqrt{x^{4}-x+1}=\left(x^{4}-x+1\right)^{1 / 2} \\
& G^{\prime}(x)=\frac{1}{2}\left(x^{4}-x+1\right)^{-1 / 2}\left(4 x^{3}-1\right) \\
& \sigma^{\prime}(x)=\frac{1}{2\left(x^{4}-x+1\right)^{1 / 2}} \cdot\left(4 x^{3}-1\right) \\
& \sigma^{\prime}(x)=\frac{4 x^{3}-1}{2 \sqrt{x^{4}-x+1}} \\
& \left.y=\frac{4}{\sqrt{9-x^{2}}}=\frac{4}{\left(9-x^{2}\right)^{2 / 8}}\right]=4\left(9-x^{0}\right)^{-1 / 2} \\
& y^{\prime}=-\partial\left(9-x^{0}\right)^{-3 / 2}(-2 x) \\
& y^{\prime}=4 x\left(9-x^{2}\right)^{-3 / 2} \\
& y^{\prime}=\frac{4 x}{\left(9-x^{2}\right)^{3 / 3}}=\frac{4 x}{\sqrt{\left(9-x^{2}\right)^{3}}} \\
& \text { (10) } \\
& y=\sqrt{x+\sqrt{x}}=(x+\sqrt{x})^{1 / 2}=\left(x+x^{1 / 2}\right)^{1 / 0} \\
& y^{\prime}=\frac{1}{2}\left(x+x^{6}\right)^{-1 / 2}\left(1+\frac{1}{2} x^{-1 /}\right) \\
& y^{\prime}=\left[\frac{1}{2(x+\sqrt{x})^{-1 / 2}}\right]\left[\frac{1}{1}+\frac{1}{\partial \sqrt{x}}\right]^{\text {Add by finding }} \text { eammon denoan } \\
& y^{\prime}=\left[\frac{1}{2 \sqrt{x+\sqrt{x}}}\right]\left[\frac{2 \sqrt{x}+1}{2 \sqrt{x}}\right] \\
& y^{\prime}=\frac{2 \sqrt{x}+1}{4 \sqrt{x} \sqrt{x+\sqrt{x}}} \text { of } \frac{2 \sqrt{x}+1}{4 \sqrt{x^{2}+x^{3 / 2}}}
\end{aligned}
$$

Limits
(1)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{(x-2) \frac{\partial}{x+2}-\frac{1}{1}}{x(x+2)}(x+2) \\
& \lim _{x \rightarrow 0} \frac{\partial-(x+2)}{x(x+2)} \\
& \lim _{x \rightarrow 0} \frac{x-x-\partial}{x(x+2)} \\
& \lim _{x \rightarrow 0} \frac{-x}{x(x+2)}=-\frac{1}{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\left(2-3 x^{2}\right)^{2}}{6 x^{4}-7 x^{2}-5} \\
& \lim _{x \rightarrow \infty} \frac{4-12 x^{2}+9 x^{4}}{6 x^{4}-7 x^{2}-5}=\frac{9}{6}=\frac{3}{2}
\end{aligned}
$$

Review:

$$
\begin{aligned}
& \text { (4) } g(x)=\left(x^{2}-3 x+4\right)\left(2 x^{2}+4 x\right) \\
& g^{\prime}(x)=\left(x^{2}-3 x+4\right)(4 x+4)+(2 x-3)\left(2 x^{2}+4 x\right) \\
& g^{\prime}(x)=4 x^{3}+4 x^{2}-12 x^{2}-12 x+16 x+16+4 x^{3}+8 x^{2}-6 x^{2}-12 x \\
& g^{\prime}(x)=8 x^{3}-6 x^{2}-8 x+16
\end{aligned}
$$

Differentiation Rules:

$$
\begin{aligned}
& \text { (6) } y=(1+x)^{10} \quad x=0 \quad y=1 \quad(0,1) \\
& * y=(1+0)^{10}=1
\end{aligned}
$$

(1) Find Derivative (2) Find Shoe $(x=0$) (3) Equation

$$
\begin{array}{rlrl}
y^{\prime}=10(1+x)^{9}(1) & y^{\prime}(0) & =10(1+0)^{9} \\
y^{\prime}=10(1+x)^{9} & & =10(1)^{9} \\
& =10 \\
\uparrow_{m}
\end{array}
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-1=10(x-0)
$$

$$
y-1=10 x
$$

$$
0=10 x-y+1
$$

(3) Sum ${ }^{+}$Difference Rule:
a)

$$
\begin{aligned}
y & =x^{10}+20 x^{5}-12 \sqrt[4]{x^{3}}+30 \\
& =x^{10}+20 x^{5}-12 x^{3 / 4}+30 \\
y^{\prime} & =10 x^{9}+100 x^{4}-9 x^{-1 / 4}+0 \\
& =10 x^{9}+100 x^{4}-\frac{9}{x^{1 / 4}}
\end{aligned}
$$

(8)

$$
\begin{aligned}
y & =\frac{4}{\sqrt{9-x^{2}}}=\frac{4}{\left(9-x^{2}\right)^{1 / 2}}=4\left(9-x^{2}\right)^{-1 / 2} \\
y^{\prime} & =-2\left(9-x^{2}\right)^{-3 / 2}(-2 x) \\
& =4 x\left(9-x^{2}\right)^{-3 / 2} \\
& =\frac{4 x}{\left(9-x^{2}\right)^{3 / 2}} \text { or } \frac{4 x}{\sqrt{\left(9-x^{2}\right)^{3}}}
\end{aligned}
$$

(4) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-F(x)}{h}$

$$
\text { b) } \begin{aligned}
\left.f(x)=\frac{2 x-1}{4 x} \right\rvert\, f(x+h) & =\frac{2(x+h)-1}{4(x+h)} \\
& =\frac{2 x+2 h-1}{4 x+4 h}
\end{aligned}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{2 x+2 h-1}{(4 x+4 h)}-\left(\frac{2 x-1}{(4 x)}\right)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{4 x(2 x+2 h-1)-(2 x-1)(4 x+4 h)}{h(4 x)(4 x+4 h)}
$$

$$
=\lim _{h \rightarrow 0} \frac{8 x^{2}+8 x h-4 x-\left(8 x^{2}+8 x h-4 x-4 h\right)}{h(4 x)(4 x+4 h)}
$$

$$
=\lim _{h \rightarrow 0} \frac{8 x^{2}+8 x h-4 x-8 x^{2}-8 x h+4 x+4 h}{h(4 x)(4 x+4 h)}
$$

$$
=\lim _{h \rightarrow 0} \frac{4 h}{\ln (4 x)(4 x+4 h)}=\frac{4}{(4 x)^{2}}=\frac{4}{16 x^{2}}=\frac{1}{4 x^{2}}
$$

Chain Rule:
(10)

$$
\begin{aligned}
& y=\sqrt{x+\sqrt{x}}=(x+\sqrt{x})^{1 / 2}=\left(x+x^{1 / 2}\right)^{1 / 2} \\
& y^{\prime}=\frac{1}{2}\left(x+x^{1 / 2}\right)^{-1 / 2}\left(1+\frac{1 x^{-1 / 2}}{2}\right) \\
& y^{\prime}=\left[\frac{1}{\partial\left(x+x^{1 / 2}\right)^{1 / 2}}\right]\left[\frac{1}{1}+\frac{1}{2 x^{1 / 2}}\right] \\
& y^{\prime}=\left[\frac{1}{2 \sqrt{x+\sqrt{x}}}\right]\left[\frac{2 \sqrt{x}+1}{2 \sqrt{x}}\right] \\
& y^{\prime}=\frac{2 \sqrt{x}+1}{4 \sqrt{x} \sqrt{x+\sqrt{x}}} \text { or } \frac{2 x^{1 / 2}+1}{4 x^{1 / 2}\left(x+x^{1 / 2}\right)^{1 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1-9 x^{2}}{3 x^{2}+2 x+1}=\frac{-9}{3}=-3 \\
& \lim _{x \rightarrow \infty} \frac{1-9 x^{2}}{3 x+1}=\text { DNF } \\
& \lim _{x \rightarrow \infty} \frac{3 x+1}{1-9 x^{2}}=0
\end{aligned}
$$

$$
\text { Ex } 2.5
$$

(4)

$$
\begin{aligned}
& \begin{array}{l}
f(\lambda)=3 \\
f^{\prime}(\lambda)=5 \quad\left(\frac{f}{g}\right)^{4}(\partial)=\frac{g(\partial) f^{\prime}(\partial)-f(\partial) g^{\prime}(\partial}{[g(\partial)]^{\partial}}
\end{array} \\
& g(2)=-1 \\
& g^{\prime}(a)=-4 \\
& =\frac{(-1)(5)-(3)(-4)}{(-1)^{2}} \\
& =\frac{-5+12}{1} \\
& =7
\end{aligned}
$$

$$
E_{x}: 2.5
$$

$$
\begin{aligned}
& \text { © } \\
& y=\frac{x^{2}}{2 x+5} \\
& y^{\prime}=\frac{(2 x+5)(2 x)-x^{2}(2)}{(2 x+5)^{2}} \\
& y^{\prime}=\frac{4 x^{2}+10 x-2 x^{2}}{(2 x+5)^{2}} \\
& y^{\prime}=\frac{2 x^{2}+10 x}{(2 x+5)^{2}}=\frac{2 x(x+5)}{(2 x+5)^{2}} \\
& \frac{0}{1} \frac{2 x(x+5)}{(2 x+5)^{2}} \\
& (2 x)(x+5)=0 \\
& y=\frac{(0)^{2}}{2(0)+5} \\
& x=-5 \\
& \begin{array}{c|c}
2 x=0 & x+5=0 \\
x=0 & x=-5
\end{array} \\
& =\frac{0}{5} \\
& =\frac{25}{-5} \\
& \begin{array}{l|l}
=0 \\
(0,0) & =-5 \\
(-5,-5)
\end{array}
\end{aligned}
$$

