$$
\begin{aligned}
& \text { (11) c) } x(x-y) \frac{x}{y}-\frac{x+y}{x-y} x y(x-y) \\
& x y(x-y) \frac{y}{x}-\frac{x+y}{x-y} x y(x-y) \\
& \frac{x^{2}(x-y)-x(x+y)}{y^{2}(x-y)-x y^{2}(x+y)} \\
& \frac{x^{3}-x^{2} y-x^{3} y-x y^{2}}{x y^{2}-y^{3}-x^{2} y=-x y^{2}} \\
& \frac{x^{3}-2 x^{2} y-x y^{2}}{-y^{3}-x^{2} y} \text { Restrictions: } \\
& x \neq 0, y \\
& y \neq 0 \\
& \text { a) } \\
& \begin{array}{c}
(3-4)(3 x-4)(x-1) \\
(3 x-4)+(x-1)=1(3 x-4)(x-1)
\end{array} \\
& 4(x-1)+3(3 x-4)=(3 x-4)(x-1) \\
& 4 x-4+9 x-12=3 x^{2}-7 x+4 \\
& \text { (13x) }-16=3 x^{2}-7 x+4 \\
& 0=3 x^{2}-20 x+20 \\
& \begin{array}{l}
a=3 \\
b=-20 \\
c=-\infty
\end{array} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{20 \pm \sqrt{400-240}}{6} \\
& x=\frac{20 \pm \sqrt{160}}{6} \quad \frac{\sqrt{16} \times 10}{4 \sqrt{10}} \\
& x=\frac{20 \pm 4 \sqrt{10}}{6} \\
& x=\frac{10 \pm 2 \sqrt{10}}{3}
\end{aligned}
$$

(2) b) $\frac{x+6}{x^{2}-4}=\frac{2}{x-2}+\frac{x}{x+2}$

$$
\begin{aligned}
& \frac{x+6}{(x+2)(x-2)}=\frac{2}{x-2}+\frac{(x+2)(x)}{x+2}(x+2)(x-2) \\
& x+6=2(x+2)+x(x-2) \\
& x+6=2 x+4+x^{2}-2 x \\
& x+6=x^{2}+4 \\
& 0=x^{2}-x-2 \\
& 0=(x-2)(x+1) \\
& x=-1,2
\end{aligned}
$$

Check ($x=-1$)
Check $(x=2)$

$$
\text { (ac) } \begin{aligned}
&(\sqrt{3 x+15})^{2}=(1+\sqrt{18+x})^{2} \\
& 3 x+15=1+\sqrt{18+x}+\sqrt{18+x}+18+x \\
& 3 x+15^{2}=x+2 \sqrt{18+x}+19 \\
& 2 x-4=2 \sqrt{18+x} \\
& 2(x-2)=2 \sqrt{18+x} \\
&(x-2)^{2}=(\sqrt{18+x})^{2} \\
& x^{2}-4 x+4=18+x \\
& x^{2}-5 x-14=0 \\
&(x-7)(x+2)=0 \\
& x=7,-2
\end{aligned}
$$

Check $(x=7) \quad \mid$ Check $(x=-2)$
(4) a) $f(x)=\frac{x^{2}-5 x-6}{x+1}=\frac{(x-6)(x+1)}{(x+1)}=x-6$
(1)Roots: (2V.A. (3) O.A. (4) Holes: (5) y int $x=6$ None $y=x-6 \quad x=-1 \quad y=-6$

(1) d

$$
\begin{aligned}
& \text { (1) } \begin{aligned}
\frac{\frac{\partial}{x}+\frac{3}{x y}}{\frac{\partial}{x y}+\frac{3}{y}} & \rightarrow \frac{\frac{2 y+3}{x y}}{\frac{\partial+3 x}{x y}} \\
\rightarrow \frac{2 y+3}{x y} \cdot \frac{x y}{\partial+3 x} & \rightarrow \frac{2 y+3}{2+3 x} \quad \begin{array}{l}
x \\
y
\end{array}
\end{aligned}=0,-\frac{2}{3}
\end{aligned}
$$

$$
\frac{x y \frac{\partial}{x}+\frac{3}{x y} x y}{x y \frac{\partial}{x y}+\frac{3}{y} x y} \rightarrow \frac{2 y+3}{\partial+3 x} \quad \begin{aligned}
& x \neq 0,-2 / 3 \\
& y \neq 0
\end{aligned}
$$

(2) $(\sqrt{3 x+15})^{2}=(1+\sqrt{18+x})^{2}$

$$
\begin{aligned}
& 3 x+15=1+2 \sqrt{18+x}+18+x \\
& 3 x+15=(19)+x)+2 \sqrt{18+x} \\
& 2 x-4=2 \sqrt{18+x} \\
& 2(x-2)=2 \sqrt{18+x} \\
& (x-2)^{2}=(\sqrt{18+x})^{2} \\
& x^{2}-4 x+4=18+x \\
& x^{2}-5 x-14=0 \\
& (x-7)(x+2)=0 \\
& x=7 \quad x=-2
\end{aligned}
$$

(4) b) $f(x)=\frac{x^{2}-2 x-3}{x^{2}+6 x+8}=\frac{(x-3)(x+1)}{(x+2)(x+4)}$
(1) roots

$$
x=-1,3 \quad x=-4,-2
$$

(3) H.A. (4) Holes: $y=1 \quad$ None
(5) yint

$$
y=-3 / 8
$$

Check Behaviour near ViA.

$$
\begin{aligned}
& x=-4 \\
& \lim _{x \rightarrow-4^{-}} f(x)=+\infty \\
& \lim _{x \rightarrow-4^{+}} f(x)=-\infty \\
& x=-2 \\
& \lim _{x \rightarrow-2^{-}} f(x)=-\infty \\
& \lim _{x \rightarrow-2^{+}} f(x)=+\infty
\end{aligned}
$$

(4)c) $f(x)=\frac{x^{2}-4}{x^{2}-9}=\frac{(x+2)(x-2)}{(x+3)(x-3)}$
(1) Roots: (3)V.A. (3) H.A. (4) Holes. (5) y int $x= \pm 2 \quad x= \pm 3 \quad y=1 \quad$ None $\quad y=4 / 9$
Check the behaviour near the V.A.

$$
\begin{aligned}
& x=-3 \\
& \lim _{x \rightarrow-3^{-}} f(x)=+\infty \\
& \lim _{x \rightarrow-3^{+}} f(x)=-\infty \\
& x=3 \\
& \lim _{x \rightarrow 3^{-}} f(x)=-\infty \\
& \lim _{x \rightarrow 3^{+}} f(x)=+\infty
\end{aligned}
$$

