Sample Problem #1:

You speed up a car from rest (0km/hr) to 60.00 km/hr in a time of 0.20 min. What is the acceleration of the car?

$$Q = \frac{V}{+} \text{ or } \frac{S}{+}$$

$$G_1 = \frac{V_2 - V_1}{f_2 - f_1} = \frac{60.00 - 0}{0.00333h_0 - 0}$$

Sample Problem #2

A roller coaster accelerates at 8.0 m/s^2 for 4.0 s. What is the change in the speed of the roller coaster?

$$01 = 8.0 \frac{1}{5^2}$$
 $5 = 4.0 \frac{1}{5}$
 $5 = \frac{800}{5^2}$
 $5 = \frac{800}{5^2}$
 $5 = \frac{800}{5^2}$
 $5 = \frac{800}{5^2}$
 $5 = \frac{800}{5^2}$

Other "looks" of the acceleration formula:

 $v_2 = v_1 + (a)(t)$

$$v = (a)(t) \qquad t = \underline{v} \le a$$

$$S = a + \frac{1}{4} + \frac{1}{4} = \frac{1}{4}$$

$$A = \frac{1}{4}$$

Sample Problem:

Sylvia's acceleration is 2.5m/s² for 1.5s. What is

her change in speed?

$$Q = 2.5 \text{ m/s}^2$$

+=1.5 s

$$v = 3.8 \text{m/s}$$

$$S = 0.1 + (2.5 \text{ m/s}^{2})(1.5 \text{ s})$$

$$= (2.5 \text{ m/s}^{2})(1.5 \text{ s})$$

$$= 3.75 \text{ m/s}$$

$$= 3.8 \text{ m/s}$$

Sample Problem:

A skatboarder rolls down a hill and changes his speed from rest to 1.9m/s. If the acceleration was 0.40m/s², for how long was the skateboarder on the hill?

4.8s
$$S_1 = 0 \, \text{m/s}$$
 $time = 1$, $time$

Sample Problem:

A bus with an initial speed of 12m/s accelerated at 0.62 m/s² for 15s. What is the final speed of the bus?

$$S_{1} = |2m/s|$$

$$S_{2} = S_{1} + a_{1} + a_{2}$$

$$= |2m/s + (0.62m/s^{2})(1s)$$

$$= |2m/s + 9.3m/s$$

$$= 21m/s$$

Complete Questions pg 388 #1-4, 7-9 pg 389 #10-14