(7) d) $x^{4}-10 x^{2}+9 \leq 0$

$$
\begin{aligned}
& y=x^{4}-10 x^{2}+9
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\substack{(+)(-)(x+)(-) \\
(+)+(+)(x) \\
(+)(+)(t)(t)}
\end{array} \quad y=(x+1)(x-1)(x+3)(x-3) \\
& (t)(+)(t)(t)
\end{aligned}
$$

(1) Roots: $(y=0) \quad$ (2/3

$$
x=-3,-1,1,3
$$

(4) $x \in[-3,-1] \cup[1,3]$
(7) c)

$$
\begin{aligned}
& x^{3}-8 \geq x^{2}+10 x \\
& x^{3}-x^{2}-10 x-8 \geq 0 \\
& y=x^{3}-x^{2}-10 x-8 \\
& y=(-1)^{3}-(-1)^{2}-10(-1)-8 \\
& y=-1-1+10-8 \\
& y=0
\end{aligned}
$$

1
$\begin{array}{lrrr}-1 & -1 & -10 & -8 \\ 1 & -2 & -8\end{array}$

$$
y=(x+1)\left(x^{2}-2 x-8\right)
$$

$$
y=(x+1)(x+2)(x-4)
$$

(1) Roots: (8) Number Line / Test Values

$$
x=-2,-1,4
$$

(3) State Intervals

$$
x \in[-2,-1] \cup[4, \infty)
$$

Review \#1
(1) g)

$$
\begin{aligned}
& 9 x^{4}+26 x^{2}+25 \quad * \sqrt{9 \cdot 25} \\
& \left(9 x^{4}+30 x^{2}+25\right)-4 x^{2} \\
& \left(3 x^{2}+5\right)\left(3 x^{2}+5\right)-4 x^{2} \\
& \left(3 x^{2}+5\right)^{2}-4 x^{2} \\
& \left(3 x^{2}+5-2 x\right)\left(3 x^{2}+5+2 x\right) \\
& \left(3 x^{2}-2 x+5\right)\left(3 x^{2}+2 x+5\right)
\end{aligned}
$$

(4) $f(x)=2 x^{2}+5 \quad g(x)=x-3$
a) $f(g(x))$

$$
\begin{aligned}
f(x-3) & =2(x-3)^{2}+5 \\
& =2\left(x^{2}-6 x+9\right)+5 \\
& =2 x^{2}-12 x+18+5 \\
& =2 x^{2}-12 x+23
\end{aligned}
$$

(4) $f(x)=2 x^{2}+5 \quad g(x)=x-3$
d) $g(f(-3))$

$$
\begin{array}{rlrl}
f(-3) & =2(-3)^{2}+5 & g(23) & =23-3 \\
& =18+5 & & =20 \\
& =23 &
\end{array}
$$

(3) $y=x^{3}-4 x^{2}+x+6$
a) $(x-2)$ is a factor

$$
\begin{aligned}
& \frac{x^{2}-2 x-3}{x-2 \sqrt{x^{3}-4 x^{2}+x+6}} \quad y=(x-2)\left(x^{2}-2 x-3\right) \\
& -\frac{\left(x^{3}-2 x^{2}\right)}{-\frac{-x^{2}}{2}+x}
\end{aligned}
$$

$$
\begin{array}{r}
\frac{-\left(-2 x^{2}+4 x\right)}{-3 x+6} \\
\frac{-(-3 x+6)}{0}
\end{array}
$$

b) Roots

$$
x=-1,2,3
$$

C) y int

$$
y=6
$$

d) local max $(x=0.5)$

$$
\begin{gathered}
y=(x-2)(x-3)(x+1) \\
y=(-1.5)(-2.5)(1.5) \\
y=5.625 \\
\text { approx. }(0.5,5.605)
\end{gathered}
$$

e) local min $(x=2.5)$

$$
\begin{aligned}
& y=(x-2)(x-3)(x+1) \\
& y=(0.5)(-0.5)(3.5) \\
& y=-0.875 \\
& (2.5,-0.875)
\end{aligned}
$$

$3^{\text {rd }}$ Degree Polynomial with a positive stretch factor
(5) $x^{2}+x \geq 30$ y values are greater $x^{2}+x-30 \geq 0$ than or equal to 0

$$
\begin{aligned}
& y=x^{2}+x-30 \\
& y=(x-5)(x+6)
\end{aligned}
$$

(1) Roots: $(y=0)$
(2) y int $(x=0)$

$$
\begin{array}{r|rr}
x-5 & =0 & x+6=0 \\
x & =5 & x=-6
\end{array} \quad y=-30
$$

(3) $2^{\text {nd }}$

Pegree \uparrow
(4)

$$
a=1
$$

$$
x \in(-\infty,-6] \cup[5, \infty)
$$

(6) $x^{3}+x^{2}<16 x+16$ values are negative $x^{3}+x^{2}-16 x-16<0$
©

$$
\begin{aligned}
& y=\left(x^{3}+x^{2}\right)(-16 x-16) \\
& y=x^{2}(x+1)-16(x+1) \quad x \in\left(-\infty, \frac{1}{(-5)}-\frac{1}{(-2)-1}(0) 4\right. \\
& y=(x+1)\left(x^{2}-16\right) \\
& y=(x+1)(x+4)(x-4) \\
& x=-4,-1,4
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) a) } \\
& y=x^{3}-4 x^{2}+x+6 \\
& x=-1 \\
& y=(-1)^{3}-4(-1)^{2}+(-1)+6 \\
& x+1 \text { is a factor } \\
& y=-1-4-1+6 \\
& y=0 \\
& \text {-1) } 1-4 \quad 1 \quad 6 \quad y=(x+1)\left(x^{2}-5 x+6\right) \\
& \begin{array}{ll}
\frac{-1}{} 5-6 & \\
1-56 & \text { b) } x=-1,2,3
\end{array} \\
& \text { c) } y=6 \\
& \text { d) } 3^{\text {no }} \text { Degree }\left(a=1 \bigcap_{0}\right. \text {. } \\
& \text { Approx Local Max (} x=0.5 \text {) } \\
& y=(1.5)(-1.5)(-2.5) \\
& y=5.6 \\
& \begin{array}{l}
\text { Approx Local } \min k=2.5) \\
y=(3.5)(5.5)(-.5)
\end{array} \\
& \begin{array}{l}
y=(3.5)(0.5)(-0.5) \\
y=0.88
\end{array} \\
& y=0.88
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) d) } 8 x^{2}-2 x-3 \quad \frac{-6}{-6} \times \frac{4}{4}=-24 \\
& \left(8 x^{2}-6 x\right)(-4 x-3) \\
& 2 x(4 x-3)+1(4 x-3) \\
& (4 x-3)(2 x+1)
\end{aligned}
$$

Factoring:
(1) Try to take out a common factor
(2) Count the terms
$\rightarrow \partial$ terms \rightarrow D, ff of Squares

- Diff of Cubes
- Sum of Cubes
$\rightarrow 3$ terms \rightarrow - simple Trinomial
- Decomposition
- Perfect Square Trinomial
- Find the Missing Term
$\rightarrow 4$ terms \rightarrow-Group for a common Factor - "" "Diff of Squares
(3) If these techniques don't work try "factor theorem" or "synthetic sub."

