Endothermic Fusion Vaporization → → Solid Liquid Gas Condensation Exothermic

Endothermic Phase Changes

- the molar enthalpy of fusion (H_{fus}) represents the quantity of heat that the substance absorbs <u>per mole</u> as it changes state from **solid to liquid**.
- the molar enthalpy of vaporization (H_{vap}) represents the quantity of heat that the substance absorbs per mole as it changes state from **liquid to gas**.

Exothermic Phase Changes

- the molar enthalpy of condensation (H_{cond}) represents the quantity of heat that the substance releases per mole as it changes state from **gas to liquid**
- the molar enthalpy of solidification (H_{solid}) represents the quantity of heat that the substance releases per mole as it changes state from liquid to solid.

 $\Delta H = nH \quad \text{Molar Enthalpy}$

Example

If 500. g of $CCl_2F_{2(l)}$ is vaporized at SATP, find the enthalpy change of the system ($H_{vap} = 34.99 \text{ kJ/mol}$).

Example Problem

Calculate the energy change that occurs when 28.0g of water is frozen.

$$H_{Sd;J} = -6.03 | CJ/R_0| | H = 2 \times 1.01$$

$$\triangle H = n | H_{Sd;d} | O - 16.00$$

$$= (1.55)(-6.03|J/R_0|) | 1 & 0.02$$

$$= -9.36 | KJ | N = M11$$

$$= 28.0$$

$$= 1.55$$

$$\Delta H_{fus} = -\Delta H_{solid}$$

$$\Delta H_{vap} = -\Delta H_{cond}$$