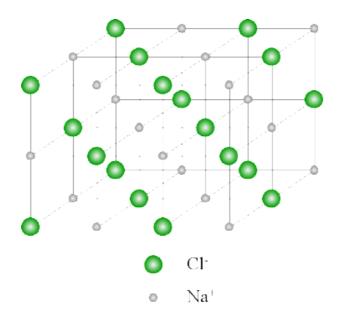


Homework Questions


p. 193 #3-11

Writing Assignment

Write a paragraph explaining the octet rule using the following words: valence, electrons, cations, anions, molecular, and ionic.

Crystal Structure of Ionic Solids

Metallic Bonds

+

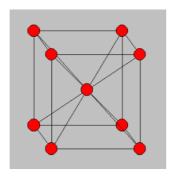
Metals are made of closely packed cations rather than neutral atoms.

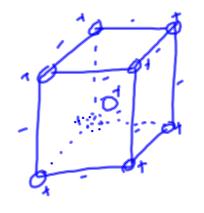
In metals, the valence electrons drift freely from one part of the metal to another.

Metallic bonds consist of the free-floating valence electrons for the positively charged metal ions.

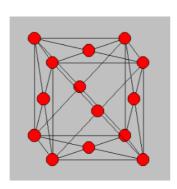
Ductility and Malleability

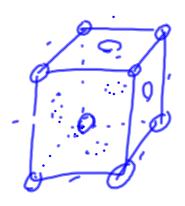
Metals - cations insulated by 'sea' of electrons

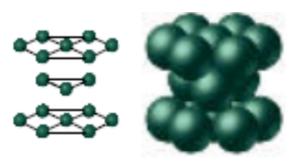

Ionic compounds - positive ions pushed together and repel, causing crystal to shatter.


Crystalline Structure of Metals

Metals are arranged in very compact and orderly patterns.


Closely-Packed Arrangements:


• Body-Centered Cubic



• Face-Centered Cubic

· Hexagonal Close-Packed

Hexagonal close-packed

Alloys

Alloys

Mixtures of two or more elements, at least one of which is a

Table 7.3

metal.

Table 7.3

Composition of Some Common Alloys						
Name	Composition (by mass)					
Sterling silver	Ag 92.5% Cu 7.5%					
Cast iron	Fe 96% C 4%					
Stainless steel	Fe 80.6% Cr 18.0% C 0.4% Ni 1.0%					
Spring steel	Fe 98.6% Cr 1.0% C 0.4%					
Surgical steel	Fe 67% Cr 18% Ni 12% Mo 3%					

Form in one of two ways:

1) Substitutional Alloys

If atoms of the alloy are about the same size, they can replace each other in the crystal.

2) Interstitial Alloys

If atomic sizes are quite different, smaller atoms can fit into the spaces between the larger atoms.

Homework

p. 203 #23-29

Table 7.1

Electron Dot Structure of Some Group A Elements									
	Group								
Period	1A	2 A	3A	4A	5 A	6 A	7 A	8A	
1	H.							He:	
2	Li-	·Be·	·B·	Ċ	N	Ö	ŧĦ.	Ne	
3	Na [.]	·Mg·	Al	Si	.P.	S	CI	:Ar	
4	K.	Ca	Ga	Ge	As	Se	Br	:Kr:	