Review Ionic Crystals - packing Metallic bonding - cations 'sea of electrons' Packing arrangements Body-Centered Cubic Face-Centered Cubic Hexagonal Close-Packed ## **Electronegativity** ## **Electronegativity** The ability of an atom in a compound to attract electrons ## **Trends** - Within a group, electronegativity increase from bottom to top - Within a period, electronegativity increases from left to right | Table 6.2 | | | | | | | |--|------------------|------------------|-----------|---------------|-----------------|-----------| | Electronegativity Values for Selected Elements | | | | | | | | H
2.1 | | | | | | | | Li
1.0 | Be
1.5 | B
2.0 | C
2.5 | N
3.0 | O
3.5 | F
4.0 | | Na
0.9 | Mg
1.2 | AI
1.5 | Si
1.8 | P
2.1 | S
2.5 | CI
3.0 | | K
0.8 | Ca
1.0 | Ga
1.6 | Ge
1.8 | As
2.0 | Se
2.4 | Br
2.8 | | Rb
0.8 | Sr
1.0 | In
1.7 | Sn
1.8 | Sb 1.9 | Te
2.1 | 1
2.5 | | Cs 0.7 | Ba
0.9 | TI
1.8 | Pb
1.9 | Bi
1.9 | | | | | | | | | | | ## **Covalent Bond** Recall that a **covalent bond** is a shared pair of electrons between two nonmetal atoms. - Electrons are attracted to the positive nuclei - Each atom wants to reach the electron configuration of a noble gas (ns²np6 Octet Rule) ### **Single Covalent Bond** Two atoms held together by sharing a pair of electrons **Molecular Formula** **Electron Dot Structure** Structural Formula F_2 ## Lone pair (unshared pair) A pair of valence electrons not shared between atoms $$H_2O$$ ## **Double covalent bond** CO_2 # Homework p. 220 #7, 8