Review

Ionic Crystals - packing

Metallic bonding - cations 'sea of electrons'

Packing arrangements
Body-Centered Cubic
Face-Centered Cubic
Hexagonal Close-Packed

Electronegativity

Electronegativity

The ability of an atom in a compound to attract electrons

Trends

- Within a group, electronegativity increase from bottom to top
- Within a period, electronegativity increases from left to right

Table 6.2						
Electronegativity Values for Selected Elements						
H 2.1						
Li 1.0	Be 1.5	B 2.0	C 2.5	N 3.0	O 3.5	F 4.0
Na 0.9	Mg 1.2	AI 1.5	Si 1.8	P 2.1	S 2.5	CI 3.0
K 0.8	Ca 1.0	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	1 2.5
Cs 0.7	Ba 0.9	TI 1.8	Pb 1.9	Bi 1.9		

Covalent Bond

Recall that a **covalent bond** is a shared pair of electrons between two nonmetal atoms.

- Electrons are attracted to the positive nuclei
- Each atom wants to reach the electron configuration of a noble gas (ns²np6 Octet Rule)

Single Covalent Bond

Two atoms held together by sharing a pair of electrons

Molecular Formula

Electron Dot Structure

Structural Formula

 F_2

Lone pair (unshared pair)

A pair of valence electrons not shared between atoms

$$H_2O$$

Double covalent bond

 CO_2

Homework

p. 220 #7, 8