Questions from Homework

$$\lambda_{1} = \frac{9}{1} \times_{-1}^{2} =$$

$$k = a + \frac{b}{t} + \frac{c}{t} = a + bt' + ct'$$

$$u'(f) = 0 - bt^{-3} - 2ct^{-3}$$

$$= -\frac{b}{t^{3}} - \frac{2c}{t^{3}} = -\frac{bt^{3} - 2ct^{3}}{t^{3}} = \frac{1}{2}(-bt - 2c)$$

$$b) V(r) = \sqrt{r} (3 + 3r) = \sqrt{r} (3 + 3r) = 3r^{3} + 3r^{3} = 3r^{3} + 3r^{3} = 3r^{3} + 3r^{3} = 3r^{3} + 3r^{3} = 3r^{3} = 3r^{3} + 3r^{3} = 3r^{3}$$

$$= \frac{2+9}{ar}$$

Bc)
$$y = x + \frac{6}{x} = x + 6x^{-1}$$
 (2,5) Point

$$0 y' = 1 - 6x^{-3} = 1 - \frac{6}{x^3}$$
 $0 y'(a) = 1 - \frac{6}{(a)^3}$

$$y-y_1 = m(x-x_1)$$

$$y-5 = -\frac{1}{5}(x-3)$$

$$y^{2} = -\frac{x}{3} + 1$$

$$= \frac{9}{1}$$

 $= \frac{9}{3}$
 $= \frac{1}{3}$
 $= \frac{9}{3}$

Warm Up

Differentiate the following:

$$f(x) = -4x^{2} - 5x(x^{3} + 7)^{2} + 2\sqrt[5]{x^{9}} - \frac{5}{x^{10}} + \frac{7x^{2}}{\sqrt{x}} - \frac{5}{x^{10}} + \frac{7x^{2}}{x^{10}} - \frac{7x^{2}}{x^$$

Differentiation Rules

Product Rule:

The Product Rule If f and g are both differentiable, then

$$\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)]$$

Express the product rule verbally if you are considering a function of the form...

$$f(x) = (First) X (Second)$$

In words, the Product Rule says that the derivative of a product of two functions is: the first function times the derivative of the second function, plus the derivative of the first function times the second function

$$(fg)' = fg' + f'g$$

Get in the habit of verbalizing the rule as you differentiate...it will help when the functions get more complicated.