Hybridization Involving Single Bonds

In <u>hybridization</u>, atomic orbitals mix to form the same total number of equivalent hybrid orbitals.

Ex. CH₄

The one 2s orbital and three 2p orbitals of a carbon atom mix to form four sp^3 hybrid orbitals.

$$\frac{C_{+}}{A.O.} \qquad M.O.$$

$$S + p_{x} + p_{y} + p_{z} \longrightarrow Sp^{3} + Sp^$$

Hybridization Involving Double Bonds

Ex. C₂H₄

The one 2s orbital and two 2p orbitals of each carbon atom mix to form three sp^2 hybrid orbitals.

Two of the sp^2 orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds.

The third sp^2 orbital overlaps with an sp^2 orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding *2p* orbitals overlap side-by-side to form a carbon-carbon pi bond.

Hybridization Involving Triple Bonds

Ex. C₂H₂

$$H-C \equiv C-H$$

The one 2s orbital and one 2p orbitals of each carbon atom mix to form two sp hybrid orbitals for each carbon.

One of the *sp* orbitals overlap with the *1s* hydrogen orbital to form carbon-hydrogen sigma bonds.

The second *sp* orbital overlaps with the *sp* orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding *2p* orbitals overlap side-by-side to form two carbon-carbon pi bonds.

A.O. M.O.
$$S + Px \longrightarrow Sp + SP$$

$$2\sigma$$

$$P_{1}, P_{2}$$

$$2\pi$$

Homework

Worksheet