(29) b)

$$
\begin{aligned}
& x^{3}-3 x^{2}-33 x+35 \quad(x-1) \text { is a fador } \\
& (1)^{3}-3(1)^{2}-33(1)+35 \\
& 1-3-33+35 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (31) } \mathrm{C} \text {) } \\
& x-3 \quad x^{4}+x^{3}-13 x^{2}-7 x+30 \\
& \left.\equiv \begin{array}{l}
\frac{-\left(x^{4}-3 x^{3}\right)}{4 x^{3}-13 x^{2}} \downarrow \\
-\frac{\left(4 x^{2}-12 x^{2}\right)}{} \\
\frac{-\left(-x^{2}-7 x\right.}{\left.-x^{2}+3 x\right)} \\
-10 x+30
\end{array} \|^{-10 x+30}\right) \\
& -\frac{(-10 x+30)}{0} \\
& \frac{x^{2}+2 x-5}{\sqrt{x^{3}+4 x^{2}-x-10}} \text { Factors: } \\
& \begin{array}{r}
\left.\frac{\left(x^{3}+2 x^{2}\right) \downarrow}{\frac{\partial x^{2}-x}{2}} \begin{array}{l}
-\frac{\left(2 x^{2}+4 x\right)}{} \\
\frac{-5 x-10}{\left(\frac{5 x-10)}{0}\right.}
\end{array}\right)
\end{array} \\
& (x-3)(x+2)\left(x^{2}+2 x-5\right)
\end{aligned}
$$

(32) a)
(i)
x-value

$$
\begin{aligned}
& \frac{1}{\partial 1} \begin{array}{rrrr}
& -4 & 1 & 6 \\
& \begin{array}{rrr}
2 & -4 & -6 \\
\hline & -2 & -3
\end{array} \\
(a-2)\left(a^{2}-2 a-3\right) \\
(a-2)(a-3)(a+1)
\end{array}
\end{aligned}
$$

Factor Theorem
(31 a) $x^{3}-x^{2}-14 x+24 \quad(x-2)$ is a factor

$$
(\partial)^{3}-(\partial)^{2}-14(\partial)+24
$$

$$
8-4-28+24
$$

0
Simple.

$$
(x-2)\left(x^{2}+x-12\right)
$$

Synthetic Substitution
(31) a)

$$
\begin{aligned}
& x^{3}-x^{2}-14 x+24 \\
& (2)^{3}-(2)^{2}-14(2)+24 \\
& 8-4-28+24 \\
& 0
\end{aligned}
$$

x value coefficients
a)

$$
\begin{array}{rrrr}
1 & -1 & -14 & 24 \\
& \partial & \partial & -24 \\
\hline 1 & 1 & -12 &
\end{array}
$$

$$
\frac{(x-2)\left(x^{2}+x-12\right)}{(x-2)(x-3)(x+4)}
$$

$$
\begin{aligned}
& \frac{x^{2}+x-12}{x^{3}-x^{2}-14 x+24} \\
& x - 2 \longdiv { x ^ { 3 } - x ^ { 2 } - 1 4 x + 2 4 } \\
& \frac{-\left(x^{3}-2 x^{2}\right) \downarrow}{x^{2}-14 x} \\
& -12 x+24 \\
& \frac{-(-12 x+24)}{0}
\end{aligned}
$$

(33) a) $x^{4}-3 x^{3}-5 x^{2}+3 x+4=0$

$$
x=1 \quad 1-3-5+3+4=0
$$

$$
\begin{aligned}
& 1 \begin{array}{llllll}
1 & -3 & -5 & 3 & 4 \\
1 & 1 & -2 & -7 & -4 \\
1 & -2 & -7 & -4 &
\end{array} \\
& (x-1)\left(x^{3}-2 x^{2}-7 x-4\right) \quad \text { Synthetic } \\
& -1-2+7-4 \\
& \text { Substitution } \\
& 1 \begin{array}{llll}
1 & -2 & -7 & -4 \\
-1 & 3 & 4 \\
\hline 1 & -3 & -4
\end{array} \\
& \begin{array}{l}
\downarrow \\
(x-1)(x+1)\left(x^{2}-3 x-4\right)
\end{array} \frac{\text { Simple }}{\text { Trinomial }} \begin{array}{l}
\frac{-4}{} \times \perp=-4 \\
-1=-3
\end{array} \\
& (x-1)(x+1)(x-4)(x+1) \\
& (x-4)(x-1)(x+1)^{2}
\end{aligned}
$$

(31) e) $x^{3}-27 x+10 \div x-5$

$$
\begin{aligned}
& x-\frac{x^{2}+5 x-2}{x^{3}+0 x^{2}-27 x+10} \\
& (x-5)\left(x^{2}+5 x-2\right) \\
& \frac{-\left(x^{3}-5 x^{2}\right)}{5 x^{2}-27} \downarrow \\
& \frac{\left.-\frac{5 x^{2}}{\left(5 x^{2}-27 x\right.}-25 x\right)}{-2 x+10} \\
& \frac{-(-2 x+10)}{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } x^{4}-3 x^{3}-5 x^{2}+3 x+4=0 \\
& (1)^{4}-3(1)^{3}-5(1)^{2}+3(1)+4=0 \\
& 1-3-5+3+4=0 \\
& 0=0 \\
& \text { 1) } \quad 1 \begin{array}{lllll}
-3 & -5 & 3 & 4
\end{array} \\
& \begin{array}{llll}
1 & -2 & -7 & -4 \\
\hline 1 & -2 & -7 & -4
\end{array} \\
& (x-1)\left(x^{3}-2 x^{2}-7 x-4\right) \longleftarrow \text { Synthetic sub. } \\
& (-1)^{3}-2(-1)^{2}-7-(-1)-4 \\
& -1-2+7-4=0 \\
& \text {-1) } \quad \begin{array}{lllll}
1 & -2 & -7 & -4
\end{array} \\
& \begin{array}{llll}
& -1 & 3 & 4 \\
\hline 1 & -3 & -4 & 8
\end{array} \\
& i \\
& (x-1)(x+1)\left(x^{2}-3 x-4\right) \longleftarrow \text { simple Trimomial } \\
& (x-1)(x+1)(x-4)(x+1) \\
& \text { or }(x-4)(x-1)(x+1)^{2}
\end{aligned}
$$

Advanced Math
(31)

$$
\text { c) } \begin{array}{r}
\frac{x-3}{\underline{\underline{\underline{x}}}-3+4 x^{2}-x-10} \\
\frac{-\left(x^{4}+x^{3}-3 x^{3}\right)}{4 x^{2}-7 x+30} \downarrow \\
-\left(\frac{\left(4 x^{3}-13 x^{2}-12 x^{2}\right)}{-x^{2}-7 x}\right. \\
-\frac{\left(-x^{2}+3 x\right)}{-10 x+30)} \\
-\frac{(-10 x+30)}{0}
\end{array}
$$

$(x-3)\left(x^{3}+4 x^{2}-x-10\right)$ Factor further (factor Theorem)

$$
\begin{aligned}
& (-2)^{3}+4(-2)^{2}-(-2)-10 \text { (x+2) is a factor } \\
& -8+16+2-10 \\
& 0
\end{aligned}
$$

$$
\left.\stackrel{x+2 \sqrt{x^{3}+2 x-5}}{=\frac{-\left(x^{3}+2 x^{2}-x-10\right.}{2} \downarrow} \frac{2 x^{2}-x}{-\frac{\left(2 x^{2}+4 x\right)}{-5}} \underset{\frac{-(5 x-10}{-5 x-10)}}{0} \right\rvert\,(x-3)(x+2)\left(x^{2}+2 x-5\right)
$$

$$
(x-3)(x+2)\left(x^{2}+2 x-5\right)=x^{4}+x^{3}-13 x^{2}-7 x+30
$$

"Factored form"
(31) f,
$(x - 1) \longdiv { (3 x ^ { 4 } + 7 x ^ { 3 } + 5 x ^ { 2 } + 7 x + 2) }$ Factor Further: "Factor Theorem"

$$
3(-2)^{4}+7(-2)^{3}+5(-2)^{2}+7(-2)+2
$$

$48-56+20-14+2$
$(x+2)$ is a factor
0

$$
\begin{array}{r}
\frac{3 x^{3}+x^{2}+3 x+1}{x+2\left(3 x^{4}+7 x^{3}+5 x^{2}+7 x+2\right.} \\
\left.-\frac{\left(3 x^{4}+6 x^{3}\right)}{4}\right)^{\frac{x^{3}+5 x^{2}}{2}} \downarrow \\
\frac{\left(x^{3}+2 x^{2}\right)}{3 x^{2}+7 x} \\
\frac{\left(3 x^{2}+6 x\right)}{x+2} \\
-\frac{x+2)}{0}
\end{array}
$$

$\left.(x-1)(x+2)\left(3 x^{3}+x^{2}\right)(3 x+1)\right)$ Group for Factor

$$
(x-1)(x+2)\left(x^{2}(3 x+1)+1(3 x+1)\right)
$$

$$
(x-1)(x+2)(3 x+1)\left(x^{2}+1\right)
$$

$$
\begin{aligned}
& x-1 \frac{3 x^{4}+7 x^{3}+5 x^{2}+7 x+2}{3 x^{5}+4 x^{4}-2 x^{3}+2 x^{2}-5 x-2} \\
& -\left(\underline{3 x^{5}-3 x^{4}}\right) \downarrow \\
& -\left(7 x^{4}-2 x^{3}\right) \downarrow \\
& 5 x^{3}+2 x^{2} \\
& \frac{\left.-5 x^{3}-5 x^{2}\right)}{7 x^{2}-5 x} \\
& \frac{-\left(7 x^{2}-7 x\right)}{\partial x-2} \\
& -\frac{(2 x-2)}{0}
\end{aligned}
$$

(32) a) (11) $m^{3}-7 m+6 \div m-1$

Synthetic Substitution

$$
\begin{aligned}
& (m-1)\left(m^{2}+m-6\right) \\
& (m-1)(m-2)(m+3)
\end{aligned}
$$

Difference of Cubes

$$
\begin{aligned}
& \left(a^{3}-b^{3}\right) \rightarrow(a-b)\left(a^{2}+a b+b^{2}\right) \\
& \left(8 x^{3}-125\right) \rightarrow(2 x-5)\left(4 x^{2}+10 x+25\right) \\
& \text { Sum of (ubs) } \\
& \left(a^{3}+b^{3}\right) \rightarrow(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

Adv Math Quiz

- Factoring
- Composite Functions
- Sketching Functions
\rightarrow Roots (xint)
\rightarrow Hint
L degree
\rightarrow stretch factor
\rightarrow local maximin
(1) f)

$$
\begin{aligned}
& x^{4}+5 x^{2}+49 \quad \sqrt{49}=7 \cdot 2=14 \\
& \left(x^{4}+14 x^{2}+49\right)-9 x^{2} \\
& \left(x^{2}+7\right)^{2}-9 x^{2} \\
& \left(x^{2}+7+3 x\right)\left(x^{2}+7-3 x\right) \\
& \left(x^{2}+3 x+7\right)\left(x^{2}-3 x+7\right)
\end{aligned}
$$

(1)e)

$$
\begin{gathered}
x^{4}+7 x^{2}+12 \\
\left(x^{2}+3\right)\left(x^{2}+4\right)
\end{gathered}
$$

f)

$$
\text { f) } \begin{aligned}
& x^{4}+5 x^{2}+49 \quad \sqrt{49}=7 \cdot 2=14 \\
& \left(x^{4}+14 x^{2}+49\right)-9 x^{2} \\
& \left.\left(x^{2}+7\right)^{2}-9 x^{2}\right) \\
& \left.\left(x^{2}+7\right)+3 x\right)\left(\left(x^{2}+7\right)-3 x\right) \\
& \left(x^{2}+3 x+7\right)\left(x^{2}-3 x+7\right)
\end{aligned}
$$

(1) g) $49 x^{2}-84 x+36$
you could
$(7 x-6)(7 x-6)$

$$
(7 x-6)^{2}
$$

Adv. Math
(1) i)

$$
\begin{aligned}
& 9 x^{2}-30 x-a^{2}+25 \\
& \left(9 x^{2}-30 x+25\right)-a^{2} \\
& (3 x-5)(3 x-5)-a^{2} \\
& (3 x-5)^{2}-a^{2} \\
& ((3 x-5)+a)(3 x-5)-a)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) a) } x^{3}+2 x^{2}-11 x-12 \\
& (-1)^{3}+2(-1)^{2}-11(-1)-12 \\
& -1+2+11-12 \\
& 0 \\
& -11 \begin{array}{rrr}
1 & 2 & -11 \\
-12 & -12 & 12 \\
\hline 1 & 1 & -12
\end{array} \quad \varnothing \\
& (x+1)\left(x^{2}+x-12\right) \\
& (x+1)(x+4)(x-3)
\end{aligned}
$$

Ado Math:
(4) $f(x)=x^{2}+3 \quad g(x)=2 x-3$
a) $f(g(x))$

$$
\begin{aligned}
f(2 x-3) & =(2 x-3)^{2}+3 \\
& =4 x^{2}-12 x+9+3 \\
& =4 x^{2}-12 x+12
\end{aligned}
$$

(1) a)

$$
\begin{aligned}
& 8 x^{3}-125 \\
& (2 x-5)\left(4 x^{2}+10 x+26\right)
\end{aligned}
$$

h)

$$
\begin{aligned}
& 5 a^{3}-10 a^{2}-40 a \\
& 5 a\left(a^{2}-2 a-8\right) \\
& (5 a)(a-4)(a+2)
\end{aligned}
$$

(1)f)

$$
\begin{aligned}
& \text { f) } \begin{array}{l}
x^{4}+5 x^{2}+49 \quad \sqrt{49}=7 \cdot 2=14 \\
\left(x^{4}+14 x^{2}+49\right)-9 x^{2} \\
\left(x^{2}+7\right)^{2}-9 x^{2} \\
\left(x^{2}+7+3 x\right)\left(x^{2}+7-3 x\right)
\end{array} \$=\text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) a) } \cdot x^{3}+2 x^{2}-11 x-12 \\
& (-1)^{3}+2(-1)^{2}-11(-1)-12 \\
& -1+2+11-12 \\
& 0 \\
& -1] \quad 1 \quad 2 \quad-11-12 \\
& \frac{-1-112}{11-12} \\
& (x+1)\left(x^{2}+x-12\right) \\
& (x+1)(x+4)(x-3) \\
& x=-1 \\
& (x+1) \text { is a factor }
\end{aligned}
$$

