Introduction Who am I? What I expect Behaviour Mutual Respect Attention / Participation Appreciation What you expect # Periodic Table Homework ## Parts of an Atom **Protons**: are 'heavy', positively charged (p⁺) particles found in the nucleus • the number of protons is equal to the atomic number **Neutrons**: are neutral particles that have the same mass as a proton and are found in the nucleus. **Electrons**: are negatively charged (e⁻) particles that circle or orbit the nucleus at different energy levels. - The particles have almost no mass. - The farther away from the nucleus an electron is, the higher the energy level. - atoms are electrically neutral, so the number of p⁺ equals the number of e⁻ # **Atomic Structure Review** What is an atom? Protons? Neutrons? Electrons? # Bohr Diagrams #### **Bohr Diagrams** - Bohr diagrams can be drawn to represent the arrangement of electrons in various levels or orbits - each orbit has a definite number of electrons the first level can have two the second can have eight the third can have eight # **Atomic Models** Draw a Bohr diagram for: c) He ## **Valence Electrons** Those electrons that are found in the highest energy level (outside orbit) are called valence electrons. These are the subatomic particles used in forming compounds. # **Bohr Diagram worksheets** # Bohr Worksheets #### Periodic Table of the Elements | I | II | | | | | | | | | | | III | IV | V | VI | VII | 0 | |--|--------------------------|-------------------|------------------|------------------|------------------|------------------|------------------|-------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | H ¹ | | | | | | | | | | | • | | | | | | He² | | Li 3 | Be⁴ | Transition Metals | | | | | | | | | | | C _e | N ⁷ | | F° | Ne | | Na | Mg | IIIB | IVB | VB | VIB | VIIB | | ушв | | IB | | Al ¹³ | Si ¹⁴ | P 15 | S ¹⁶ | CI ¹⁷ | Ar ¹⁸ | | K ¹⁹ | Ca | Sc | Ti ²² | V 23 | Cr ²⁴ | Mn | Fe | Co | Ni ²⁸ | Cu | Zn | Ga | Ge | As | Se | Br ³⁵ | Kr ³⁶ | | Rb ³⁷ | Sr | A 38 | Zr ⁴⁰ | Nb | M0 | Tc ⁴³ | Ru⁴ | Rh⁵⁵ | Pď | Ag ⁴⁷ | Cd ⁴⁸ | In ⁴⁹ | Sn | Sb⁵¹ | Te ⁵² | 53 | Xe ⁵⁴ | | Cs ⁵⁵ | Ba ⁵⁶ | 57-71 | Hf ⁷² | Ta ⁷³ | W^{74} | Re ⁷⁵ | Os ⁷⁶ | Ir 77 | Pt ⁷⁸ | Au 79 | Нg | TI ⁸¹ | Pb ⁸² | Bi ⁸³ | Po 84 | At ⁸⁵ | Rn | | Fr ⁸⁷ | Ra | 89-103 | Rf 104 | Ha 105 | 106 | 107 | 108 | 109 | | | | | | | | | | | Lanthanides Lanthanides Lanthanides Lanthanides Lanthanides Lanthanides Lanthanides Actinides Actinides Lanthanides Lanthanid | | | | | | | | | | | | | | | 103 | | | | | Metal Metalloid Nonmetal | | | | | | | | | | | | | | | | |