Check Homework

CH₃-CH =
$$C(CH_3)$$
- $C(CH_3)$ 2- CH_3

CH₃

H-H

$$-\frac{1}{C} - \frac{1}{C} = \frac{1}{C} - \frac{1$$

Aromatic Compounds

Historically aromatic compounds were organic compounds with an odour. Today aromatic compounds are defined as benzene (C_6H_6) and all carbon compounds that contain benzene-like structures.

Ex.

Although the molecular formula for benzene suggests 3 double bonds between three single bonds, empirical evidence shows:

(i) the ring is relatively unreactive we know multiple bonds are reactive

(ii) The C--C bonds are of equal length and strength [EMPIRICAL EVIDENCE DOES NOT MATCH THEORY]

The evidence can only be explained if the pi electrons are delocalized (do not stay with any one carbon) and circle in a donut shaped cloud above and below the plane of the sp² C-C bonds.

Substituted Benzenes

Mono- substituted benzene structures

Ex.

Ctt3

methylbenzene

No number is needed for mono-substitued benzenes because all ring positions are identical.

Simple Di - substituted benzenes Ex.

When two groups are attached to benzene, the ring is numbered to give the lower numbers to the branches.

1,2-dimethylbenzene or ortho-dimethylbenzene

The prefix meta is used for 1,3 di-substituted benzenes.

1,3-dimethylbenzene or meta-dimethylbenzene

The prefix para is used for 1,4 di- substituted benzenes.

13-dimethylbenzene or para-dimethylbenzene

When the benzene ring itself is considered as a branch, it is given the name phenyl

Ex.

5-phanyl-2-partyne

