

Natural Numbers

Whole Numbers

Integers

Rational

Irrational

Real

Natural numbers are the numbers we use everyday for <u>counting</u>.

N{1,2,3,4,5,...}

Whole Numbers

The set of whole numbers includes <u>zero</u>, as well as all the <u>natural numbers</u>

W {0, 1, 2, 3, 4, 5, }

mergers

Integers are whole numbers and their opposites.

[\{-3, -2, -1, 0, 1, 2, \ldots\}

<u>Irrational Numbers</u> can not be written as a fraction m/n, where $n \neq 0$. It is represented by a decimal that does not terminate or repeat.

Examples: $\sqrt{26} = 5.099019514...$ on forever $\sqrt[4]{15} = 1.967989671...$ with no $\sqrt[3]{10} = 2.15443469...$

Any number that can be written in the form m/n, where $n \neq 0$. Rational numbers terminate or repeat.

$$4/5 = 0.8$$
 $1/3 = 0.3333...$ $\sqrt{25} = 5$ $= 0.\overline{3}$

 $\sqrt{64}$

Irrational Radicals

When an irrational number is written as a radical, the radical is the exact value of the irrational number.

Rational Radicals

Radicals that are square roots of perfect squares, cube roots of perfect cubes, and so on are rational numbers.

$$\sqrt[3]{8} = 2$$
 $\sqrt[4]{256}$ $\sqrt{16/25}$

Let's Check Your Understanding!

Tell whether each number is rational or irrational.

a)
$$\sqrt{\frac{49}{16}}$$
 b) $\sqrt[3]{-30}$ c) 1.21 d) $-3/5$ e) $\sqrt[3]{8/27}$