Chapter 5 Review

1. A mini Ferris wheel has a radius of 3 m and makes one complete revolution every 16 seconds. The bottom of the wheel is 2 m above the ground. If a person gets on at the bottom and goes up, determine the following:
a) Amplitude:
b) Period:
c) b :
d) Minimum Height:
e) Maximum Height:
f) Vertical Displacement:
g) Equation: \qquad
h) Sketch the graph for two revolutions (periods):

i) Find a time when the person will be 6 m high?
2. A weight attached to the end of a spring is bouncing up and down. As it bounces, its distance from the floor varies sinusoidally with time. You start a stopwatch, when the watch reads 0.4 sec , the weight first reaches a high point 50 cm above the floor. The next low point, 30 cm above the floor, occurs at 1.8 sec .
(a) Predict the distance the weight will be from the floor when the stopwatch reads 17.2 sec .
(b) How high was the weight above the floor when the stopwatch was initially started?
3. Find $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{P}$, and the equation of the sinusoidal axis for each of the following
a) $5(y-1)=25 \cos (x-25)$
b) $\frac{y+3}{4}=\sin \left[\frac{1}{2}(4 x+200)\right]+2$
4. Graph the following Sinusoidal Functions: (One Period)
$y=3 \sin \left[2\left(x-\frac{\pi}{4}\right)\right]+1$

5. Find the first positive sine and cosine equation from the graph below.
