Hybridization Involving Single Bonds

In <u>hybridization</u> atomic orbitals mix to form the same total number of equivalent hybrid orbitals.

Ex. CH₄

The one 2s orbital and three 2p orbitals of a carbon atom mix to form four sp^3 hybrid orbitals.

atomic orbitals

S+Px+Py+Pz - Sp3+Sp3+Sp3+

Sp3

Sp3

C bonds

Hybridization Involving Double Bonds

Ex. C₂H₄

$$C = C$$

The one 2s orbital and two2p orbitals of each carbon atom mix to form threesp² hybrid orbitals.

Two of the *sp*² orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds.

The third sp^2 orbital overlaps with an sp orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding2p orbitals overlap side-by-side to form a carbon-carbon pi bond.

$$S + px + py \rightarrow Sp^2 + Sp^2 + Sp^2$$

$$T$$

$$P_2 \rightarrow \Upsilon$$