Hybridization Involving Single Bonds In <u>hybridization</u> atomic orbitals mix to form the same total number of equivalent hybrid orbitals. Ex. CH₄ The one 2s orbital and three 2p orbitals of a carbon atom mix to form four sp^3 hybrid orbitals. $$S + px + pz \rightarrow 5p^2 + 5p^2 + 5p^2$$ $Py \rightarrow T$ $||eftorer||$ ## **Hybridization Involving Double Bonds** Ex. C₂H₄ $$H$$ $C = C$ The one 2s orbital and two2p orbitals of each carbon atom mix to form threesp² hybrid orbitals. Two of the *sp*² orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds. The third sp^2 orbital overlaps with an sp orbital from the other carbon to form a carbon-carbon sigma bond. The non-bonding 2p orbitals overlap side-by-side to form a carbon-carbon pi bond. ## **Hybridization Involving Triple Bonds** Ex. C_2H_2 The one 2s orbital and one 2p orbitals of each carbon atom mix to form two sp hybrid orbitals for each carbon. One of the *sp* orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds. The second *sp* orbital overlaps with thes*p* orbital from the other carbon to form a carbon-carbon sigma bond. The non-bonding 2p orbitals overlap side-by-side to form two carbon-carbon pi bonds. $$H - C_{3} = C_{3} - C_{4} = C_{5} - C_{6} - H$$ $H + C_{5} = C_{2} - C_{13} - C_{4} = C_{5} - C_{6} - H$ $H + C_{5} = C_{5} - C_{6} - H$ | Shape | trig. | Trig.
Planar | Maredia | linear | linear | tetraho | dyw | |--------|-----------------|-----------------|-----------|----------------|----------------|---------|-----| | 710 | 3/1 | 3/1 | 4/0 | 2/2 | 2/2 | 4/0 | | | Hybrid | 5p ² | Sp ² | Sp | SP | SP | $5p^3$ | | | | C_{i} | Cz | ζ_3 | C ₄ | C ₅ | C6 | | Ci \rightarrow StpxtPy \rightarrow Sp²tsp²tsp² C₂ \rightarrow StpxtPy \rightarrow Sp²tsp²tsp² C₃ \rightarrow StpxtPy+P₂ \rightarrow Sp³tsp³tsp³ C₄ \rightarrow Stpx \rightarrow Sp+Sp 9 ## Homework p. 236 #23-29