Hybridization Involving Single Bonds

In <u>hybridization</u> atomic orbitals mix to form the same total number of equivalent hybrid orbitals.

Ex. CH₄

The one 2s orbital and three 2p orbitals of a carbon atom mix to form four sp^3 hybrid orbitals.

$$S + px + pz \rightarrow 5p^2 + 5p^2 + 5p^2$$
 $Py \rightarrow T$
 $||eftorer||$

Hybridization Involving Double Bonds

Ex. C₂H₄

$$H$$
 $C = C$

The one 2s orbital and two2p orbitals of each carbon atom mix to form threesp² hybrid orbitals.

Two of the *sp*² orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds.

The third sp^2 orbital overlaps with an sp orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding 2p orbitals overlap side-by-side to form a carbon-carbon pi bond.

Hybridization Involving Triple Bonds

Ex. C_2H_2

The one 2s orbital and one 2p orbitals of each carbon atom mix to form two sp hybrid orbitals for each carbon.

One of the *sp* orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds.

The second *sp* orbital overlaps with thes*p* orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding 2p orbitals overlap side-by-side to form two carbon-carbon pi bonds.

$$H - C_{3} = C_{3} - C_{4} = C_{5} - C_{6} - H$$
 $H + C_{5} = C_{2} - C_{13} - C_{4} = C_{5} - C_{6} - H$
 $H + C_{5} = C_{5} - C_{6} - H$

Shape	trig.	Trig. Planar	Maredia	linear	linear	tetraho	dyw
710	3/1	3/1	4/0	2/2	2/2	4/0	
Hybrid	5p ²	Sp ²	Sp	SP	SP	$5p^3$	
	C_{i}	Cz	ζ_3	C ₄	C ₅	C6	

Ci \rightarrow StpxtPy \rightarrow Sp²tsp²tsp² C₂ \rightarrow StpxtPy \rightarrow Sp²tsp²tsp² C₃ \rightarrow StpxtPy+P₂ \rightarrow Sp³tsp³tsp³ C₄ \rightarrow Stpx \rightarrow Sp+Sp

9

Homework

p. 236 #23-29