Warm-Up

8. Copy and complete the table.

Translation	Transformed Function	Transformation of Points	
vertical	y = f(x) + 5	$(x, y) \rightarrow (x, y + 5)$	
H	y = f(x + 7)	$(x, y) \rightarrow (x - 7, y)$	
H	y = f(x - 3)	$(x_{ij}) \rightarrow (x+3, y)$	
V	y = f(x) - 6	(x,y) -> (x,u,6))
horizontal and vertical	y+9=f(x+4)	(x,y) ->(x-4, y-	_9
horizontal and vertical	y+6=5(x-4)	$(x, y) \rightarrow (x + 4, y - 6)$	
M+ N	u-3=5(x+2)	$(x, y) \rightarrow (x - 2, y + 3)$	
horizontal and vertical	y = f(x - h) + k	(x,y) > (x+h,y)	f þ

Questions from Homework

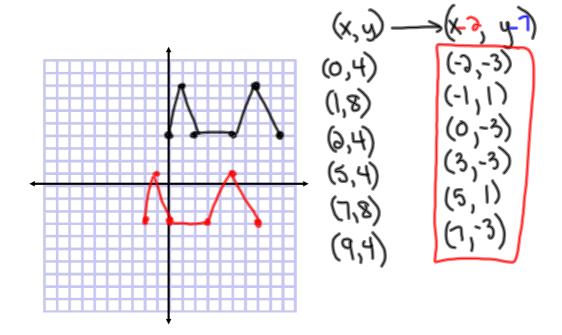
$$0 cy = f(x-17) + 13 or y-18 = f(x-17)$$

 $h = 17$ $K = 13$

ⓐ Given
$$h = a$$
 and $k = -5$ $\rightarrow y - k = f(x - h)$
a) $y = x^{a}$ by $y = |x|$ c) $y = \frac{1}{x}$
 $y + 5 = (x - a)^{a}$ $y + 5 = |x - a|$ $y + 5 = 1$

(x,y)
$$\rightarrow$$
 (x-20,y+10)
(x,y) \rightarrow (x-20,y+10)

$$\Phi = 3$$
 y+7 = $f(x+2)$
 $h=-3$
 $K=-7$



Transformations:

New Functions From Old Functions

Translations

Stretches

Reflections

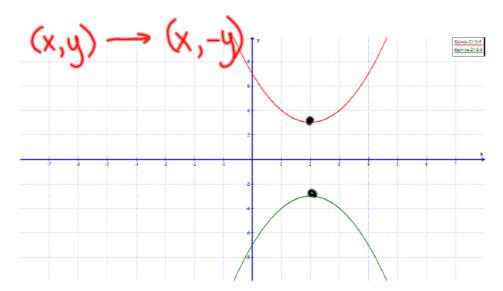
Reflections and Stretches

Focus on...

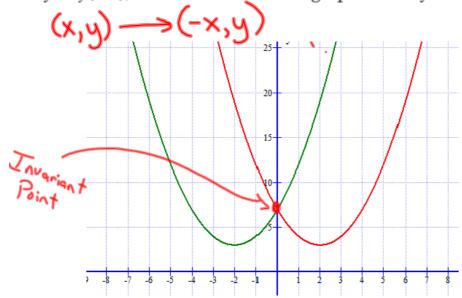
- developing an understanding of the effects of reflections on the graphs of functions and their related equations
- developing an understanding of the effects of vertical and horizontal stretches on the graphs of functions and their related equations

A **reflection** of a graph creates a mirror image in a line called the line of reflection. Reflections, like translations, do not change the shape of the graph. However, unlike translations, reflections may change the orientation of the graph.

• When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the x-axis.



• When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the y-axis.



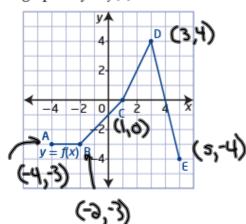
invariant point

- a point on a graph that remains unchanged after a transformation is applied to it
- any point on a curve that lies on the line of reflection is an invariant point

Example 1

Compare the Graphs of y = f(x), y = -f(x), and y = f(-x)

- a) Given the graph of y = f(x), graph the functions y = -f(x) and y = f(-x).
- **b)** How are the graphs of y = -f(x) and y = f(-x) related to the graph of y = f(x)?

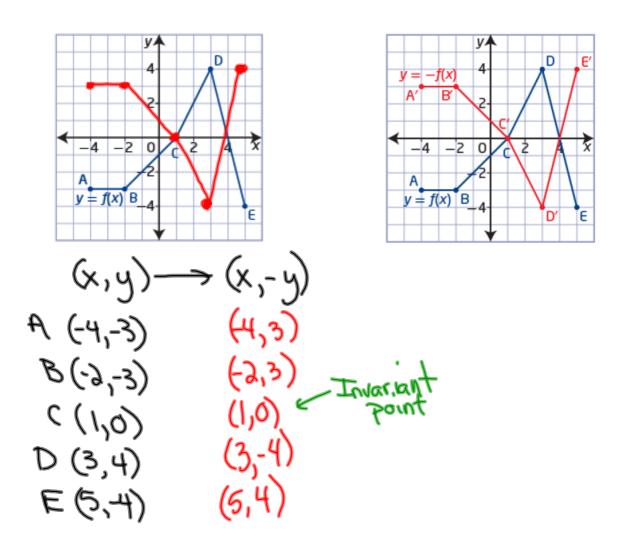


$$00 y = -5(x)$$

 $00 y = 5(-x)$

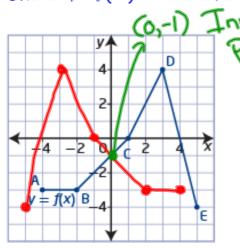
Remember...

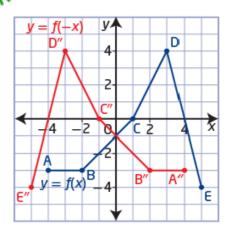
- When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the *x*-axis.
- Sketch y = -f(x) on the axis below



Remember...

- When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the *y*-axis.
- Sketch y = f(-x) on the axis below





$$(x,y) \longrightarrow (-x,y)$$

A $(-4,-3)$

B $(-3,-3)$

C $(1,0)$

D $(3,4)$

E $(5,4)$

(-5,-4)

stretch + Compression

- a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor
- scale factors between 0 and 1 result in the point moving closer to the line of reflection; scale factors greater than 1 result in the point moving farther away from the line of reflection

Vertical and Horizontal Stretches

A stretch, unlike a translation or a reflection, changes the shape of the graph. However, like translations, stretches do not change the orientation of the graph.

- When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.
- When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

Vertical Stretch
$$(x,y) \rightarrow (x, ay)$$
 $0 = 3f(x) = 3f(x) = 3$
 $(x,y) \rightarrow (x,ay)$
 $0 = 3f(x) = 3f(x) = 3$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x)$

Horizontal Stretch: $(x,y) \rightarrow (x,y) \rightarrow (x,y)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x) = 3f(x) = 3f(x) = 3f(x) = 3f(x)$
 $0 = 3f(x) = 3f(x)$

Vertical Stretch or Compression...

• When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.

Example 2

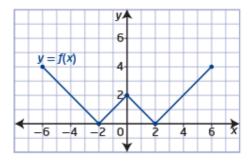
Graph y = af(x)

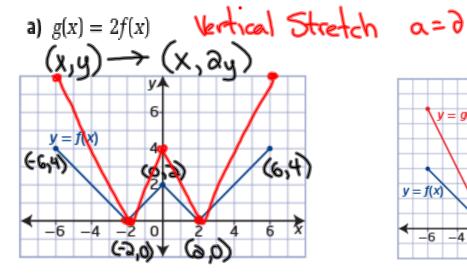
Given the graph of y = f(x),

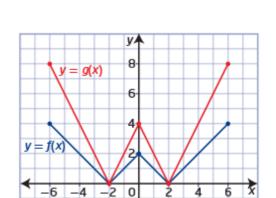
- transform the graph of f(x) to sketch the graph of g(x)
- describe the transformation
- · state any invariant points
- state the domain and range of the functions

a)
$$g(x) = 2f(x)$$

b)
$$g(x) = \frac{1}{2}f(x)$$



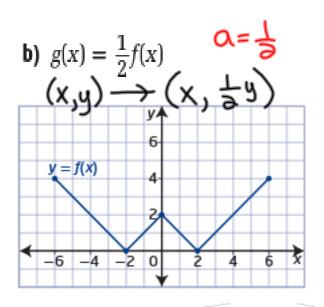


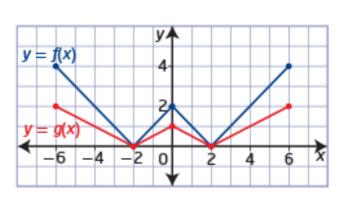


The invariant points are (-2, 0) and (2, 0).

For f(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4].

For g(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 8, y \in R\}$, or [0, 8].





The invariant points are (-2, 0) and (2, 0).

For f(x), the domain is

 $\{x \mid -6 \le x \le 6, x \in \mathbb{R}\}, \text{ or } [-6, 6],$

and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4].

For g(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 2, y \in R\}$, or [0, 2].

Horizontal Stretch or Compression...

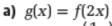
• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

Example 3

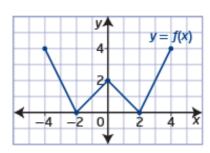
Graph y = f(bx)

Given the graph of y = f(x),

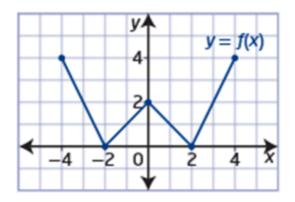
- transform the graph of f(x) to sketch the graph of g(x)
- · describe the transformation
- state any invariant points
- state the domain and range of the functions



b)
$$g(x) = f(\frac{1}{2}x)$$



a)
$$g(x) = f(2x)$$



The invariant point is

For f(x), the domain is

or and the range is

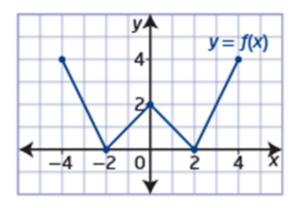
or

For g(x), the domain is

or and the range is

or

$$b) g(x) = f\left(\frac{1}{2}x\right)$$

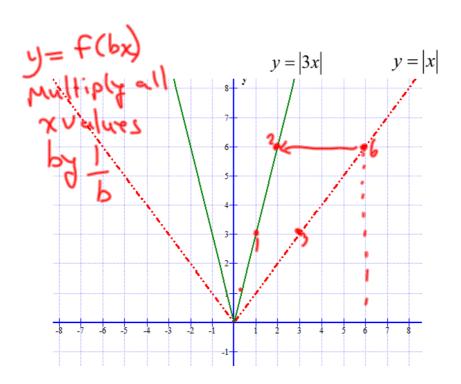


The invariant point is

For f(x), the domain is and the range is

For g(x), the domain is and the range is

Horizontal Stretch or Compression...



Horizontal Stretch or Compression...

• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

$$y = -3f(-2x) + 7$$

Homework

