Check Homework - Worksheet

Solutions

Solution - homogeneous (uniform) mixture of a solute and a solvent.

⇒solute - substance dissolved

⇒ solvent - substance doing dissolving (liquid)

Ex. Salt water

solute solvent

If the amount of solute that can dissolve in a solvent is large, then the solute is said to have a high solubility. (a)

If the amount of solute that can dissolve in a solvent is small, then the solute is said to have alow solubility. (5),(9)

Solid substances formed from reactions in solutions are known as **precipitates**.

What happens when an ionic compound dissolves??

This process is called solvation.

Solubility Rules

- Polar solvents will dissolve ionic compounds and polar compounds
- Nonpolar solvent will dissolve nonpolar compounds Ex. oil in gasoline

"Like dissolves like"

Solution Formation

There are three factors that affect how fast a substance will dissolve:

- 1) temperature
- 2) agitation (stirring)
- 3) surface area of dissolving particles

Solubility

30g 1100mL

solubility - concentration of a saturated solution at a room temperature (normally 20°C).

saturated solution - solution at maximum concentration, in which no m solute can be dissolved

<u>supersaturated solution</u>- solution contains more solute than it can theoretically hold at a given temperature

Solubility Generalizations

- solubility of solids increases with an increase in temperature
- solubility of gases decreases with an increase in temperature
- some liquids have no maximum limit of dissolving (miscible liquids)
- some liquids will not dissolve in other liquids (immiscible liquids)
- as the partial pressure of a gas increases, its solubility increases

Henry's Law
$$\frac{S_1}{P_1} = \frac{S_2}{P_2}$$

$$\frac{0.779lL}{3.5atm} = \frac{S_2}{1.0atm}$$

$$\frac{S_2}{1.0atm} = \frac{S_2}{1.0atm}$$

$$\frac{S_2}{3.5atm} = \frac{S_2}{1.0atm}$$

$$\frac{S_2}{3.5atm} = \frac{S_2}{1.0atm}$$

$$\frac{S_2}{3.5atm} = \frac{S_2}{1.0atm}$$

p. 477 #1-7