Check Homework - #1-7

b) gas lliquid

$$\frac{S_1}{P_1} = \frac{S_2}{P_2}$$

Concentration of a Solution

<u>concentration</u>- a numerical ratio comparing the quantity of solute to the quantity of solution.

⇒units: g/L or g/mL (solutes that are solids in pure form)

<u>dilute</u> - a solution that has a small amount of solute as compared to the amount of solvent

<u>dilution</u> - process of adding more solvent to cause a solution to become more dilute

<u>concentrated</u> - a solution that has a large amount of solute as <u>compared</u> to the amount of solvent

molar concentration (molarity)- the amount of moles of solute dissolved one litre of solvent

⇒units: mol/L

Concentration
$$C = \frac{n}{V} \leftarrow \text{the moles}$$
 (mol/L)
 (mol/L)
 (mol/L)

Ex. An intravenous solution contains 0.90 g NaCl in 100.mL of solution. What is the molarity of this solution?

$$m = 0.90g$$

Nacl

 $V = 100 \cdot \text{mL}$
 $C = 90.100 \text{L} 0.90g \text{Nacl} \times \frac{1 \text{ mol Nacl}}{58.44g \text{Nacl}} = 0.0154 \text{mol}$

Nacl -
$$3(1 \times 22.99) + (1 \times 35.45) = 58.449 \text{ mol}$$

$$C = \frac{1}{V}$$

$$C = 0.0154 \text{ mol}$$

$$0.100 \text{ L}$$

$$C = 0.15 \text{ mol/L}$$

Ex. What volume of solution is required to dissolve 1.75 mol to make a 0.95 mol/L solution of CaCO₃?

$$V = ?$$

$$0.95 \text{ mol}/L = 1.75 \text{ mol}$$

$$C = 0.95 \text{ mol}/L$$

$$0.95 \text{ mol}/L$$

$$V = 1.75 \text{ mol}$$

$$0.95 \text{ mol}/L$$

$$V = 1.75 \text{ mol}$$

$$0.95 \text{ mol}/L$$

$$V = 1.8 \text{ L}$$

Ex. A sample of laboratory ammonia solution has a concentration of 14.8 mol/L. What mass of ammonia is present in a 25.0 mL sample of this solution?

C= 14.8 md/L

NH3

$$n = C \times V$$
 $n = P \times V$
 $v = P \times V$

Practice Problems

p. 481 #8,9

p. 483 #10,11