2. a) iron (II) oxide \rightarrow iron + oxygen

Reaction Type $=$ Decomposition
$2 \mathrm{FeO} \rightarrow \quad 2 \mathrm{Fe}+\mathrm{O}_{2}$
b) zinc + sodium sulphide \rightarrow sodium + zinc sulfide

Reaction Type $=$ Single Replacement
$\mathrm{Zn}+\mathrm{Na}_{2} \mathrm{~S} \rightarrow 2 \mathrm{Na}+\mathrm{ZnS}$
c) calcium chloride + lithium nitrate \rightarrow calcium nitrate + lithium chloride

Reaction Type = Double Replacement

$$
\begin{aligned}
\mathrm{CaCl}_{2}+2 \mathrm{Li}\left(\mathrm{NO}_{3}\right) & \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{LiCl} \\
\text { d) magnesium }+ \text { oxygen } & \rightarrow \text { magnesium oxide }
\end{aligned}
$$

Reaction Type $=$ Synthesis
$2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
e) chlorine + silver bromide \rightarrow bromide + silver chloride

Reaction type $=$ Single Replacement
$\mathrm{Cl}_{2}+2 \mathrm{AgBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{AgCl}$
f) copper + barium sulphate \rightarrow barium + copper (I) sulphate

Reaction Type: Single Replacement
$2 \mathrm{Cu}+\mathrm{BaSO}_{4} \rightarrow \mathrm{Ba}+\mathrm{Cu}_{2} \mathrm{SO}_{4}$
g) sodium hydroxide + calcium carbonate \rightarrow sodium carbonate + calcium hydroxide

Reaction type = Double Replacement
$2 \mathrm{NaOH}+\mathrm{CaCO}_{3} \rightarrow \mathrm{Na}_{2}\left(\mathrm{CO}_{3}\right)+\mathrm{Ca}(\mathrm{OH})_{2}$
h) potassium chloride \rightarrow potassium + chlorine

Reaction Type $=$ Decomposition
$2 \mathrm{KCl} \rightarrow 2 \mathrm{~K}+\mathrm{Cl}_{2}$
3. For each of the following combustion reactions, complete the balance chemical reaction
a) $\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
complete combustion
b) $\mathrm{C}_{4} \mathrm{H}_{10}+4 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{CO}+2 \mathrm{C}+5 \mathrm{H}_{2} \mathrm{O}$
incomplete combustion
c) $2 \mathrm{C}_{6} \mathrm{H}_{14}+19 \mathrm{O}_{2} \rightarrow \quad 12 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}$ complete combustion
4. Solution A has a mass of 103 g . Solution B has a mass of 55 g . When they are mixed, a chemical reaction occurs in which a gas is produced. If the mass of the final mixture is 155 g , what mass of gas was produced? Define the law of conservation of mass using this example.

$A=103 \mathrm{~g}$	$A+B \rightarrow$ product + gas	the law of conservation of mass states
$B=55 \mathrm{~g}$	$103 \mathrm{~g}+55 \mathrm{~g} \rightarrow 155 \mathrm{~g}+$ gas	that the mass of the reactants must
$158 \mathrm{~g} \rightarrow 155 \mathrm{~g}+$?	equal the mass of the products. The	
$158 \mathrm{~g}-155 \mathrm{~g}=$?	mass that is missing is of the gas that	
$3 \mathrm{~g}=$ gas	has evaporated during the reaction.	

