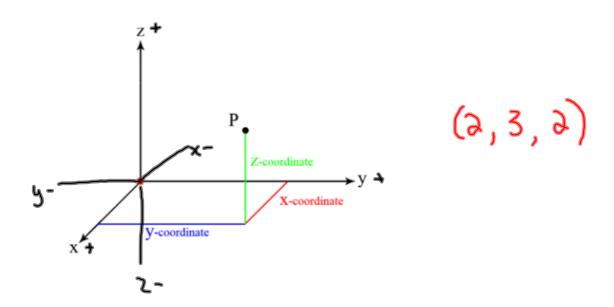

## **ALGEBRA OF 3-SPACE**

- Coordinate geometry that represents space in **three** dimensions
- Coordinates are in the form of an ordered triplet (x, y, z)
- Three planes exist: xy plane, xz plane, yz plane




x axis -axis coming "out of the page"

y axis - horzontal axis

z axis - vertical axis

# Plotting Points in 3-Space

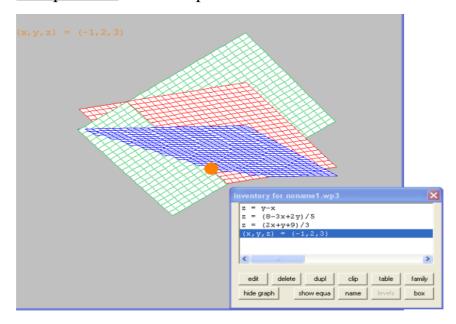


## Solving 3 x 3 Systems

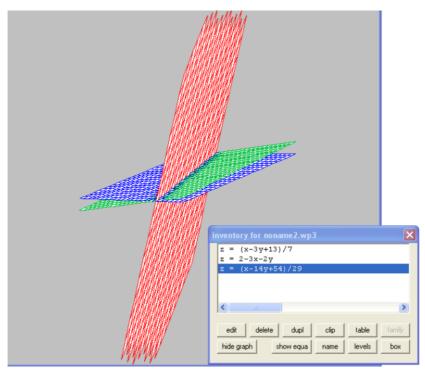
#### **REMEMBER:**

- you can multiply equations by a constant
- can add & subtract 2 equations to get a new equation
- you can rearrange the order of equations

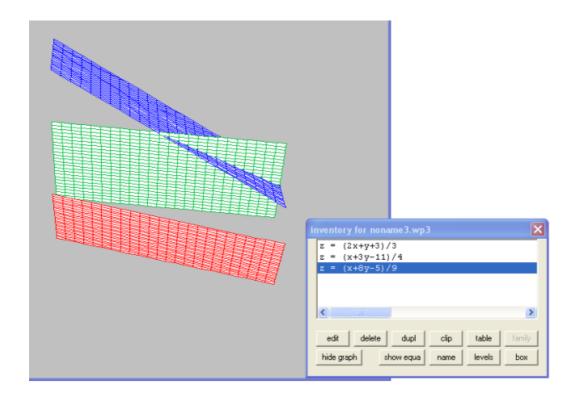
#### **STEPS:**


- 1) Eliminate one of the variables
- 2) Solve the 2 x 2 system
- 3) Use "backward substitution" to obtain a solution

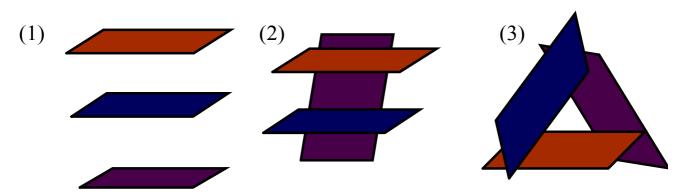
# Types of Systems


Remember: Looking at intersecting planes!

#### **Consistent:**


<u>Independent</u>: one unique solution




## **Dependent**: Infinite number of solutions



## **Inconsistent:** No Solutions



3 Possible Orientations That Give No Solution...



### I. Consistent System with a Unique Solution

#### Solve using algebraic techniques

$$3x-2y=6$$

$$5x-9y+5z=-36$$

$$x-6y+7z=-39$$

$$35x-63y+35z=-950$$

$$30x-33y=-57$$

$$30x-33y=-57$$

$$3x-3y=6$$

$$3x-6y+7z=-39$$

$$3x-3y=6$$

$$3x-3y=6$$

$$3x-6y+7z=-39$$

$$3x-3y=6$$

$$3x-6y+7z=-39$$

$$3x-6y+7z=-39$$

$$3x-6y+7z=-39$$

$$3x-6y+7z=-39$$

$$3x-6y+7z=-39$$

$$-46+7z=-39$$

$$7z=7$$

$$7z=7$$

$$7z=7$$

$$7z=7$$

### I. Consistent System with a Unique Solution

Solve the following system of equations using a matrix reduced to its row echelon form.

$$4x + 3y - z = -7$$
$$3x - 2y + 3z = -10$$
$$x + y - z = -2$$

$$\begin{bmatrix} 4 & 3 & -1 & | & -1 \\ 3 & -3 & 3 & | & -10 & | & -36 & | & 0 & -5 & 6 & | & -4 \\ 1 & 1 & -1 & | & -3 & | & 60 & | & -3 & | & -1 & | & 56 & | & -4 \\ 1 & 1 & -1 & | & -3 & | & 60 & | & -3 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | & -1 & | &$$

#### **Word Problems**

The San Diego Chargers football team uses three brands of cleats each year: Nike, Adidas, and Reebok. Last year the team went through a total of 410 pairs of cleats. Nike's cost \$84/pair, Adidas \$72/pair and Reeboks \$65/pair and they spent \$31 050 on cleats last season. If Nike's cleats were used twice as much as Reeboks, how many pairs of each brand of football cleat did they use?

(Declare variables, write a system of equations and an augmented matrix to model the problem then use your TI-84 to solve.)

Let 
$$x = N_1 ke$$
  $X = \partial Z$ 
Let  $y = Adidas$   $X - \partial z = 0$ 

Let  $Z = Reebok$   $X - \partial z = 0$ 

84x + 72y + 66z = 31050  $\begin{bmatrix} 84 & 72 & 65 & 31050 \\ 1 & 1 & 1 & 410 \\ 1 & 0 - \partial & 0 \end{bmatrix}$ 
 $X + y + Z = 410$ 
 $X - \partial Z = 0$ 

They used 180 pairs of Nike cleats, 140 pairs of Adidas and 90 pairs of Reebok.

## II. Consistent System with a Dependent Solution (must create a parametric solution)

$$x - 3y - 7z = -13$$

$$3x + 2y + z = 2$$

$$3 x - 14y - 29z = -54$$

(a) 
$$-44y-88z=-164$$
  
(b)  $-44y+88z=-164$   
(c)  $-11y-20t=-41$   
 $-11y=-41$ 

$$-1|y-2\partial t = -4|$$
 $-1|y = -4|+\partial t$ 

$$\sqrt{u = 4|-2\partial t}$$

$$x-3y-7z=-13$$

$$x - 3\left(\frac{41-22t}{11}\right) - 7t - 13$$

$$11x - 133 + 66t - 77t = -143$$

$$11x = -30 + 11t$$

$$x = -30 + 11t$$

$$11$$

## Don't forget about Matrices:

- Basic operations
- Determinants
- Identity Matrix
- Inverse Matrices
- Operations with TI-83
- Row Reduced Echelon Form

$$3x+y=-3$$
  $7-x+y=1$ 
 $-(1)+y=1$ 
 $3x=-3$ 
 $1+y=1$ 
 $y=0$ 

1 Determinant Method.

$$X+y+z=9000$$
  
 $0.08x+0.1y+0.16z=1160$   
 $-0.08x-0.1y+0.16z=440$ 

$$\begin{bmatrix} 1 & 1 & 1 & 9000 \\ 0.08 & 0.1 & 0.16 & 1160 \\ 0.08 & -0.1 & 0.16 & 440 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 8000 \\ 0 & 1 & 0 & 8000 \\ 0 & 0 & 1 & 8000 \end{bmatrix}$$