(2)

$$
\begin{aligned}
& y=2 x^{3}-5 x^{2}-4 x+3 \quad \text { if } x=-1 \text { makes } \\
& =2(-1)^{3}-5(-1)^{2}-4(-1)+3 \\
& =-2-5+4+3 \\
& =0 \\
& x + 1 \longdiv { \frac { 2 x ^ { 2 } - 7 x + 3 } { 2 x ^ { 3 } - 5 x ^ { 2 } - 4 x + 3 } } \\
& -\left(2 x^{3}+2 x^{2}\right) \downarrow \\
& \begin{array}{r}
-\left(-7 x^{2}-4 x-7 x\right) \\
3 x+3
\end{array} \\
& \begin{aligned}
-(3 x+3) \\
0
\end{aligned} \\
& y=0 \text { the }(x+1) \\
& \text { is a factor. } \\
& \text { Decamp. }-\underline{6} \times-1=6 \\
& \downarrow \quad \underline{-6}+\underline{-1}=-7 \\
& (x+1)\left(2 x^{2}-7 x+3\right) \\
& (x+1)\left(2 x^{2}-6 x-1 x+3\right) \\
& (x+1)[2 x(x-3)-1(x-3)] \\
& (x+1)(2 x-1)(x-3)
\end{aligned}
$$

(3) $y={ }^{a}(x+3)^{2}(x-2)(x-3)$

Roots: $x=-3,-3,2,3$
c) App. Local Max $(x=-0.5)$

$$
\begin{aligned}
& y=(x+3)^{2}(x-2)(x-3) \\
& y=(2.5)^{2}(-2.5)(-3.5) \\
& y=54.7 \\
& (-0.5,54.7)
\end{aligned}
$$

d) $A_{p p}$. Local $\min (x=2.5)$

$$
\begin{aligned}
& y=(x+3)^{2}(x-2)(x-3) \\
& y=(5.5)^{2}(0.5)(-0.5) \\
& y=-7.6 \\
& (2.5,-7.6)
\end{aligned}
$$

Quartic with a positive stretch factor Starts in Qa and ends in QI.

Questions from Homework
(b)

$$
\begin{array}{ll}
x^{3}-x^{2}<12 x & + \\
x^{3}-x^{2}-12 x<0 & +(-4)-3(-1) 0_{0}^{(1)} 4(5) \\
y=x^{3}-x^{2}-12 x \\
y=x\left(x^{2}-x-12\right) \\
y=(x)(x-4)(x+3) & x \in(-\infty,-3) \cup(0,4 \\
y
\end{array}
$$

Roots. $x=-3,0,4$

Limits Review

1. Evaluate the following limits if they exist.
(a) $\lim _{x \rightarrow-5} \frac{x^{2}-25}{x^{2}+5 x}$
(b) $\lim _{x \rightarrow \infty} \frac{2 x^{2}-x-6}{\left(3 x^{2}-1\right)^{2}}$

$$
\begin{aligned}
& \lim _{x \rightarrow-5} \frac{(x-5)(x+5)}{x(x+5)} \\
& \lim _{x \rightarrow-5} \frac{(x-5)}{x}=\frac{-10}{-5}=2
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} & \frac{2 x^{2}-x-6}{9 x^{4}-6 x^{2}+1} \\
& =0
\end{aligned}
$$

(c) $\lim _{x \rightarrow 1} \frac{(x+3)^{3}-64}{x-1}$
(d) $\lim _{x \rightarrow 5} \frac{\left.(\sqrt{x+4}-3)^{(x+4}+3\right)}{(x-5)(x+4)}$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{((x+3)-4)\left((x+3)^{2}+4(x+3)+16\right)}{x-1} \\
& =16+16+16 \\
& =48
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 5} \frac{x+4-9}{(x-5)(\sqrt{x+4}+3)} \\
& =\frac{1}{6}
\end{aligned}
$$

2. Given the function ... $f(x)= \begin{cases}(x+3)^{2} & \text { if } x<-2 \\ -x-1 & \text { if }-2 \leq x<1 \\ 1 & \text { if } x=1 \\ (x-2)^{2}-3 & \text { if } x>1\end{cases}$

Using the three conditions for continuity examine $f(x)$ for any points of discontinuity. Draw a sketch of $f(x)$ and list any point(s) of discontinuity

4. Differentiate the following functions using the limit definition of the derivative:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)}{h}-f(x)
$$

a) $f(x)=\longdiv { x ^ { 2 } + 4 x + 2 }$

$$
\begin{aligned}
& f(x+h)=(x+h)^{2}+4(x+h)+2 \\
& f(x+h)=x^{2}+2 x h+h^{2}+4 x+4 h+2
\end{aligned}
$$

$$
F(x)=\lim _{h \rightarrow 0} \frac{x^{\gamma}+2 x h+h^{2}+4 x+4 h+x^{2}-\left(x^{2}+4 x+2\right)}{h}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}+4 h}{h}
$$

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{k(2 x+h+4)}{k}=\frac{2 x+4}{\begin{array}{c}
\text { Slope of the } \\
\text { tangent }
\end{array}}
$$

5. Find the equation of the tangent line to the curve at the given point.
a) $y=\left(x^{2}+1\right)^{2}$ at $(-1,4)$

$$
y=x^{4}+2 x^{2}+1
$$

(1) Find derivative:

$$
y^{\prime}=4 x^{3}+4 x
$$

(2) Find Slope (Sub in "x")

$$
\begin{aligned}
& y^{\prime}=4(-1)^{3}+4(-1) \\
& y^{\prime}=-4-4
\end{aligned}
$$

$$
y^{\prime}=-8 \rightarrow \text { Slope } " \mathrm{~m} \text { " }
$$

(3) Find the equation

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=-8(x+1) \\
& y-4=-8 x-8 \\
& 8 x+y+4=0
\end{aligned}
$$

7. Find the derivative: Express answers with positive exponents!

$$
\begin{array}{lr}
\text { a) } f(x)=3 x^{5}+\sqrt[3]{x} & \begin{array}{l}
\text { b) } f(x)=\sqrt[5]{x^{2}} \\
F(x)=3 x^{5}+x^{1 / 3}
\end{array} \\
f(x)=x^{2 / 5} \\
f^{\prime}(x)=15 x^{4}+\frac{1 x^{-2 / 3}}{3} & F^{\prime}(x)=\frac{2}{5} x^{-3 / 5} \\
F^{\prime}(x)=15 x^{4}+\frac{1}{3 x^{2 / 3}} & F^{\prime}(x)=\frac{2}{5 x^{3 / 5}}
\end{array}
$$

Homework.
(1) a) $\lim _{x \rightarrow 0} \frac{(x+\partial) \frac{\partial}{x+\partial}-\frac{1}{1}(x+\partial) \quad C D:(x+\partial)}{x(x+\partial)}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{2-x-2}{x(x+2)} \\
& \lim _{x \rightarrow 0} \frac{-x}{x(x+2)}=\frac{-1}{2}
\end{aligned}
$$

