SOLUTIONS => CHAPTER 6 - CHAPTER TEST

MULTIPLE CHOICE

1. Which parabola corresponds to the greatest value of c, the constant coefficient in the function $y = ax^2 + bx + c$?

A.

B.

c.

D.

2. Which of these equations represents the parabola shown?

A.
$$y = -x(x-5) + 1$$

$$C.y = -x^2 + 6x - 5$$

B.
$$y = -x^2 - 6x + 5$$

D.
$$y = -(x-5)^2 + 1$$

4¹/₂ (3,4) 2--2--2--4 4 6 8

- 3. What is the vertex of $f(x) = -0.5(x + 4)^2 2$? Vertex (-4)-2.)
 - A. (4, -2)
- B. (-2, -4) C. (2, -4)
- (-4, -2)
- **4.** What is the equation of the axis of symmetry of f(x) = -5x(x-7) + 21?
- (partially Ly 2 points with a y-coordinate of 21. $\frac{-5x=0}{-5} \quad \text{or } x-7=0$ x=7

X=0 (0,21) (7,21)

Axis of Symmetry is midway between these points. X = O + I

X = 3.5

A. x = 7

B. x = 0

(C.)x = 3.5 D. x = -7

5. Which equation is a quadratic equation in standard form?

A.
$$-3x^3 + 2x - 5 = 0$$

A.
$$-3x^3 + 2x - 5 = 0$$
 B. $2x^2 - 5x = 15$ **C.** $f(x) = 2x^2 + 3x - 5$

- $(D.)4x^2 6x + 5 = 0$
- 6. Select the one correct statement about the quadratic equations corresponding to these graphs.
 - A. Equation I has no solution.
 - (B.) Equations I and III each have at least one real solution.
 - C. Each equation has at least one real solution.
 - D. Equation II has two solutions.
- 7. The graphs of $f(x) = 5.5x^2 + x 1.1$ and g(x) = 4x(3 x) are shown. Estimate the roots of $5.5x^2 + x - 1.1 = 4x(3 - x)$.

A.
$$x = -0.1$$
 and $x = -1.2$

B.
$$x = 1.3$$
 and $x = 8.8$

D.
$$x = -1.2$$
 and $x = 8.8$

8. Which of the following are roots of $x^2 - 9x - 52 = 0$?

A M

$$\Rightarrow x^2 - 9x - 52 = 0$$

 $(x - 13)(x + 4) = 0$
 $x - 13 = 0 \text{ or } x + 4 = 0$
 $x = 13$ $x = -4$

A.
$$x = -4$$
 and $x = -13$

$$C_0 x = -4 \text{ and } x = 13$$

B.
$$x = 4$$
 and $x = -13$

D.
$$x = 4$$
 and $x = 13$

10. Which parabola corresponds to the quadratic function $y = 2x^2 + 4x - 16$?

$$y = x^{2} + 2x - 8$$

$$0 = x^{2} + 2x - 8$$

$$0 = (x + 4)(x - 2)$$

$$x + 4 = 0 \text{ or } x - 2 = 0$$

$$x = -4 \qquad x = 2$$

- 11. Can you solve $x^2 + 14x 19 = 0$ by factoring? How do you know?
 - (A.) No; $14^2 4(1)(-19) = 272$, which is not a perfect square.
 - **B.** Yes; $14^2 4(1)(-19) = 272 > 0$.
 - C. Yes; because $14^2 4(1)(-19) = 272$, which is a perfect square.
 - D. It is not possible to answer this question.
- 12. Use the quadratic formula to determine which of the following are roots of the equation $4.4x^2 + 4.3x - 5 = 0$.

$$X = -4.3 \pm \sqrt{(4.3)^2 - 4(4.4)(-5)}$$

$$x = -4.3 \pm \sqrt{18.49 + 88}$$

$$\chi = -4.3 \pm 10.3$$

$$\chi = -4.3 + 10.3$$
 or $\chi = -4.3 - 10.3$

$$= 0.68$$

$$\chi = -1.66$$

A.
$$x = 0.68$$
 and $x = 1.66$

A.
$$x = 0.68$$
 and $x = 1.66$ (C.) $x = 0.68$ and $x = -1.66$

B.
$$x = -0.68$$
 and $x = 1.66$

B.
$$x = -0.68$$
 and $x = 1.66$ **D.** $x = -0.68$ and $x = -1.66$

NUMERICAL RESPONSE

x-intercepts:
$$(3, 0)$$
, $(1, 0)$ y-intercept: $(0, 2)$ axis of symmetry: $x = 1$ vertex: $(1, 3)$

b) What is the range of the function corresponding to this parabola? range: $\{y \mid y \leq 3, y \in R\}$

14. The roots of
$$x^2 + 17x - 38 = 0$$
 are $x = -19$ and $x = 2$.

$$\begin{array}{c} 4 \times x^{2} + 17x - 38 = 0 \\ (x + 19)(x - 2) = 0 \\ x + 19 = 0 \text{ or } x - 2 = 0 \\ x = -19 \qquad x = 2 \end{array}$$

- **16.** The quadratic function y = -5x(x + 4) + 7 has been partially factored.

L>Axis of Symmetry: X = 0-4

a) Determine the equation of the axis of symmetry of the function: x = -2.

To determine vertex: y = -5(2)[-2+4]+7 y = 10(2)+7 y = 30+7 y = 37

- b) Locate the vertex of the function: (<u>-2</u>, <u>27</u>)
- c) Write the function in vertex form: $y = -5(x + 2)^2 + 27$

17. Suppose you were to use the quadratic formula to solve these equations. What values of *a*, *b*, and *c* would you use in each case?

a)
$$3x^2 - 2x + 1 = 0$$

$$a = 3$$
, $b = 2$, $c = 1$

b)
$$-2(x-1)^2-1=0$$

$$a = -2$$
, $b = 4$, $c = -3$

$$\begin{array}{c} L_{7}-2(x-1)(x-1)-1 \\ -2(x^{2}-1x-1x+1)-1 \\ -2(x^{2}-2x+1)-1 \\ -2x^{2}+4x-2-1 \end{array}$$

-2x2+4x-3

18. Use the quadratic formula to determine the exact roots of each quadratic equation.

a)
$$7x^2 + 3x - 2 = 0$$

roots: $\chi = 3 \pm 6.5$

b)
$$-4x^2 - 2x + 3 = 0$$

roots: $\chi = \frac{-1 \pm \sqrt{13}}{4}$

$$a = 7, b = 3, c = -2$$

$$x = -b \pm \sqrt{b^2 + 4ac}$$

$$2a$$

$$x = -3 \pm \sqrt{(3)^2 + (7)(2)}$$

$$x = -3 \pm \sqrt{9 + 56}$$

$$x = -3 \pm \sqrt{65}$$

$$x = -3 \pm \sqrt{65}$$

$$x = 2 \pm \sqrt{4 + 48}$$

$$x = -3 \pm \sqrt{65}$$

$$x = 2 \pm \sqrt{4 \times 13}$$

$$x = 2 \pm 2\sqrt{13}$$

$$x = 2 \pm 2\sqrt{13}$$

$$x = 2 \pm 2\sqrt{13}$$

22. Jill braked to avoid an accident, creating skid marks 60 m long. For Jill's car on a dry road, the equation for stopping distance is d = 0.0081s² + 0.137s, where d is Jill's stopping distance in metres and s is her speed in kilometres per hour. How fast was Jill driving?

$$d = 0.0081S^{2} + 0.137S$$

$$60 = 0.0081S^{2} + 0.137S - 60$$

$$0 = 0.0081S^{2} + 0.137S - 60$$

$$0 = 0.0081, b = 0.137, c = -60$$

$$x = -b \pm \sqrt{b^{2} - 4ac}$$

$$x = -0.137 \pm \sqrt{(0.137)^{2} - 4(0.0081)(-60)}$$

$$x = -0.137 \pm \sqrt{0.019 + 1.944}$$

$$0.0162$$

$$x = -0.137 \pm \sqrt{1.963}$$

$$0.0162$$

$$x = -0.137 \pm 1.401$$

$$0.0162$$

 $\chi = -0.137 + 1.401$ or $\chi = -0.137 - 1.401$ 0.0162 0.0162 $\chi = -94.9$ (speed cannot be negative) dill was driving 78.0 Km/h.

$$y=a(x-h)^2+K$$

 $y=a(x+3)^2-2$
=> $y=\pm(x+3)^2-2$

To determine "a":

$$1 = a(-6+3)^2-2$$

 $1 = a(-3)^2-2$
 $1 = a(9)-2$
 $1 = 9a-2$
 $3 = 9/9$

<u>__</u>=q

