1. Write all angles which will solve these problems.
a. $\cos \theta=\frac{\sqrt{3}}{2}, 0^{\circ}<\theta<360^{\circ}$
b. $\sin \theta=-\frac{\sqrt{2}}{2}, 0<\theta<2 \pi$
c. $\cot \theta=$ undefined, $0^{\circ} \leq \theta \leq 720^{\circ}$
d. $2 \sin \theta-1=0,-2 \pi \leq \theta \leq 2 \pi$
e. $\cos ^{2} \theta+\frac{1}{2} \cos \theta=0,0^{\circ} \leq \theta<360^{\circ}$
2. Simplify the following (if necessary express answers as radicals in simplest form)
a. $\frac{3}{1-2 \sin 3 \pi / 4}$
b. $\frac{\sin ^{2} 225^{\circ}}{8 \sin 120^{\circ}}$
c. $\cos ^{2} 210^{\circ}+\sin ^{2}\left(-30^{\circ}\right)-\sin 90^{\circ}+\tan 480^{\circ}$
d. $\frac{2 \cos 3 \pi+\sin 11 \pi / 4}{\cos ^{2} \pi / 6}$
3. The point $(-2,6)$ lies on the terminal arm of an angle θ. Calculate the six trigonometric ratios of θ, expressed as radicals in simplest form.
4. If $\sec \theta=-\frac{\sqrt{11}}{3}$ and $\tan \theta>0$, determine the value of the 5 remaining trig ratios expressed as radicals in simplest form.
5. Find one positive and one negative angle that is co-terminal to the following:
a. $\frac{2 \pi}{9}$
b. -900°
c. 300°
