Equations in Standard Form

$$y = a\sin[b(x-c)] + d$$

 $\mathcal{C} = Amplitude \rightarrow \text{ influences how tall the sine curve is.}$

$$b = \frac{360}{P} \rightarrow \text{influences how often the pattern repeats.}$$

 $C = Horizontal Translation \rightarrow$ Influences how far to the left or the right that the graph will shift.

- If C is positive → Shift Right
- If C is negative → Shift Left

 $d = Vertical\ Translation \rightarrow \text{influences how far up and down the graph will shift.}$

- If d is positive \rightarrow Shift Up
- If d is negative \rightarrow Shift Down

Questions from Worksheet

State a, b, c, d, and P from the following sinusoidal equations:

$$2y + 6 = 4\sin(4x + \frac{\pi}{2}) - 2$$

$$3y = \frac{4}{3}\sin(4x + \frac{\pi}{3}) - \frac{8}{3}$$

$$y = \frac{3}{3}\sin(4x + \frac{\pi}{3}) - \frac{4}{3}$$

$$y = \frac{3}{3}\sin(4x + \frac{\pi}{3}) - \frac{4}{3}\sin(4x + \frac{\pi}{3}) - \frac{4}{3}\sin(4$$

Sketching Sinusoidal Functions using Mapping

Development of a standard form for sinusoidal functions...

Standard Form
$$y = a \sin[b(x-c)] + d$$

- 1. Reflection: If a < 0 the graph will be reflected in thex-axis.

- 4. Horizontal Phase Shift: The graph will shift "c" units to the right.
- 5. Vertical Translation: The graph will shift "d" units up.

The Mapping Rule:
$$(x,y) \rightarrow \left[\frac{x}{b} + c, ay + d\right]$$

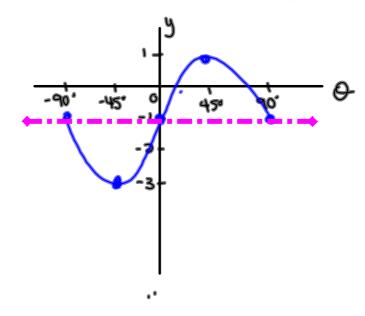
Use Mapping to Graph

$$y = -2\sin[2(\theta + 90^{\circ})] - 1$$

$$b = \lambda$$

$$c = -90$$

$$d = -1$$


y = -sin0

ઝ	у		
0 *	Ø		
90 °	1		
180 *	0		
270 °	1		
360 °	\wedge		

$$(x,y) \rightarrow \begin{bmatrix} x \\ b \end{bmatrix} + c, ay + d$$

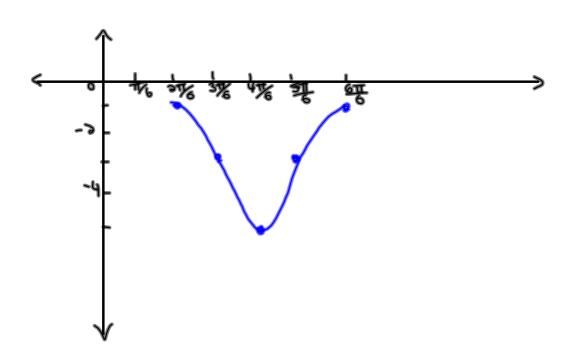
New points after mapping

B	у		
-90°	- 1		
~45°	<u>გ</u>		
0°	-		
45°	1		
90°	-		

Use Mapping to Graph

$$3y = 6\cos[(3x - \pi)] - 9$$

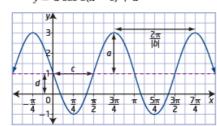
 $y = 2\cos[3(x - \frac{\pi}{3})] - 3$


$$a = 3$$

$$a = 3$$
 $b = 3$ $c = \frac{11}{3}$ $d = -3$
 $P = \frac{311}{3}$

$$d = -3$$

B	у	
0	1	
₹/3	O	
π	- (
31/2	0	
म		


$(x,y) \rightarrow \left[\frac{x}{h} + c, ay + d\right]$		
$\begin{bmatrix} (x,y) \\ b \end{bmatrix}$	Ŧ	у
21/6	T/3	_
New points after mappings	4/4	-3
411/6	21/3	-5
57%	511/6	-3

Key Ideas

 You can determine the amplitude, period, phase shift, and vertical displacement of sinusoidal functions when the equation of the function is given in the form y = a sin b(x - c) + d or y = a cos b(x - c) + d.

For:
$$y = a \sin b(x - c) + d$$

 $y = a \cos b(x - c) + d$

How does changing each parameter affect the graph of a function?

Vertical stretch by a factor of |a|

- changes the amplitude to |a|
- reflected in the x-axis if a < 0

Horizontal stretch by a factor of $\frac{1}{|b|}$

- changes the period to $\frac{360^{\circ}}{|b|}$ (in degrees) or $\frac{2\pi}{|b|}$ (in radians)
- \bullet reflected in the y-axis if b<0

Horizontal phase shift represented by \boldsymbol{c}

- to right if c > 0
- to left if c < 0

Vertical displacement represented by \boldsymbol{d}

- up if d > 0
- down if d < 0

 $d = \frac{\text{maximum value} + \text{minimum value}}{2}$

 You can determine the equation of a sinusoidal function given its properties or its graph.

Homework

Finish worksheet