- 1) 31 200 J
- 7) 0.0456 J/g °C
- 2) -31 700 J
- 8) 424 g

3) 120°C

9) 2.60 J/g °C

4) 28°C

10) 6.21 J

5) 1100 J

11) 42.6 L

6) 14 900 J

Homework - Worksheet

$$\begin{array}{ll}
3m = 50.09 & Q = mC \Delta T \\
T_i = 140°C & q = mC (T_F - T_i) \\
q = -2.5 kJ & q = mC (T_F - T_i) \\
C = 2.01 & G = -2500J = (50.09(2.01 G) (T_F - 140°C) \\
T_F = ? & -2500J = T_F - 140°C \\
(50.09(2.01 G) = T_F - 140°C \\
T_F = 140°C - 24.88°C
\\
T_F = 115.12°C
\\
T_F = 120°C$$

(I)
$$\Delta T = -65.0^{\circ}C$$
 $Q = VC\Delta T$

$$Q = -332 kJ$$

$$V = ?$$

$$C = 0.0012 \frac{kJ}{l \cdot c} V - \frac{-332 kJ}{(0.0012 \frac{kJ}{l \cdot c})(-65.0^{\circ}C)}$$

$$V = \frac{1}{2.9 L}$$

PHASE CHANGE AND ENTHALPY

Classifying types of systems:

- 1. <u>Open system</u> a system where both matter and energy can flow into or out of the system.
- 2. <u>Closed system</u> a system where energy is allowed to be transferred into and out but matter cannot be transferred.
- 3. <u>Isolated system</u> a system where neither matter nor energy is allowed to enter or leave the system.

ENTHALPY (H) - The total internal (potential) energy and kinetic energy of a system under constant pressure.

⇒Enthalpy is usually expressed in kJ.

ENTHALPY CHANGE (Δ H) - A change under constant pressure where the surroundings of a system absorb energy or release it to the system.

PHASE CHANGE - is a change in the state of matter without a change in the chemical composition of the system. Ex. $H_2O_{(1)} \longrightarrow H_2O_{(g)}$

⇒always involve a change in energy but never involve a change in temperature.

Question:

- (i) What is the temperature where water just starts boiling?
- (ii) What is the temperature when water is boiling violently?
- (iii) If energy is still going into the water and the temperature is not increasing, where is the energy going?

Consider melting ice to water and then boiling water to steam:

heat heat
$$H_2O_{(s)} -----> H_2O_{(l)} -----> H_2O_{(g)}$$

MOLAR ENTHALPY

For any system:

- an exothermic change involves a decrease in enthalpy

⇒gives off energy to the surroundings

⇒ △H is negative.

Condensation, Soliditication

- an endothermic change involves an increase in enthalpy.

⇒takes in energy from the surroundings

 $\Rightarrow \Delta H$ is positive.

The enthalpies for substances undergoing phase changes have been measured experimentally. (TABLE 17.3 p. 522)

- enthalpies are reported as molar enthalpies and are expressed as kJ/mol.

Endothermic Phase Changes

- the molar enthalpy of fusion (H_{fus}) represents the quantity of heat that the substance absorbs per mole as it changes state from **solid to liquid** .
- the molar enthalpy of vaporization (H_{vap}) represents the quantity of heat that the substance absorbs per mole as it changes state from **liquid to gas**.

Exothermic Phase Changes

- the molar enthalpy of condensation (H_{cond}) represents the quantity of heat that the substance releases per mole as it changes state from ${f gas}$ to ${f liquid}$
- the molar enthalpy of solidification (H_{solid}) represents the quantity of heat that the substance releases per mole as it changes state from **liquid to solid**.

$$\Delta \mathbf{H}_{\text{fus}} = -\Delta \mathbf{H}_{\text{solid}}$$

$$\Delta H_{\text{vap}} = -\Delta H_{\text{cond}}$$

Example

If 500. g of $CC_{\frac{1}{2}}F_{2(l)}$ is vaporized at SATP, find the enthalpy change of the system ($H_{vap} = 34.99 \text{ kJ/mol}$).

$$M=500.9$$
 $M=500.9$ $M=100.9$ $M=10$

FORMULA: Corol solid

Solid

Hos n Hos

enthalpy moles. molar

change (mol) enthalpy

(K)

Worksheet

Heat (q)

- change in kinetic energy
- measures transfer of energy when there are temperature changes (heating or cooling)

Enthalpy (H)

- measures potential energy
- change in energy transfer when system is at constant pressure and same initial and final temperatures