Warm-Up...

Given that (-2, 5) is a point on the graph of y = f(x), determine the coordinates of this point once the following transformations are applied...

$$\begin{array}{ccc}
a=3 & b=1 \\
h=0 & K=0
\end{array}$$

$$(1) y=3f(x)$$

$$(x,y) \longrightarrow (x,3y)$$

$$(-2,5) \longrightarrow (-3,15)$$

$$a=4$$
 $b=\frac{1}{5}$
 $h=-5$
 $K=-3$
 $(3) y=4f\left[\frac{1}{2}(x+5)\right]-3$
 $(x,y) \longrightarrow (2x-5, 4y-3)$
 $(-2,5) \longrightarrow (-9,17)$

$$\begin{array}{ccc}
 & b = \frac{1}{3} \\
 & h = 0 & k = 0 \\
 & (2) & y = f\left(-\frac{1}{3}x\right) \\
 & (x, y) \longrightarrow (3x, y) \\
 & (-3, 5) \longrightarrow (6, 5)
\end{array}$$

$$\begin{array}{ccc}
 & A = 3 & A = 5 \\
 & A = 5 & A = 5
\end{array}$$

$$\begin{array}{ccc}
 & (4) & y - 5 = -2f(-2x + 6) \\
 & y = -3f(-3(x - 3)) + 5
\end{array}$$

$$\begin{array}{ccc}
 & (x, y) & \longrightarrow & (-1/2 & x + 3, -2y + 5) \\
 & (-2, 5) & \longrightarrow & (4, -5)
\end{array}$$

Summary of Transformations...

Questions from Homework

(3)
$$0 \quad y = 5(0)$$
 $y = x^{3}$
 $y = x^{3}$
 $y = \frac{1}{4}x^{3}$
 $y = \frac{1}{4}x^{4}$
 $y = \frac{1}{4}x^{4}$
 $y = \frac{1}{4}x^{4}$
 $y = \frac{1}{4}x^{4}$

Transformations: q(x) = -35(4(6-4)) - 10

2. The function y = f(x) is transformed to the function g(x) = -3f(4x - 16) - 10. Copy and complete the following statements by filling in the blanks.

The function f(x) is transformed to the function g(x) by a horizontal stretch about the ② by a factor of ②. It is vertically stretched about the ② by a factor of ③. It is reflected in the ②, and then translated ④ units to the right and ③ units down.

Transformations:

$$y = f(x)$$
 $\longrightarrow y = af(b(x-h)) + k$

Mapping Rule:

$$(x,y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$$

Important note for sketching...

Transformations should be applied in following order:

- 1. Reflections
- 2. Stretches
- 3. Translations

Remember....RST

Example 1

Graph a Transformed Function

Describe the combination of transformations that must be applied to the function y = f(x) to obtain the transformed function. Sketch the graph, showing each step of the transformation.

a)
$$y = 3f(2x)$$

b)
$$y = f(3x + 6)$$

$$0 \quad y = 3f(3x)$$

a)
$$y = 3f(2x)$$

a) Compare the function to y = af(b(x - h)) + k. For y = 3f(2x), a = 3, b = 2, h = 0, and k = 0.

The graph of y = f(x) is horizontally stretched about the y-axis by a factor of $\frac{1}{2}$ and then vertically stretched about the x-axis by a factor of 3.

Apply the horizontal stretch by a factor of ¹/₂ to obtain the graph of y = f(2x).

• Apply the vertical stretch by a factor of 3 to y = f(2x) to obtain the graph of y = 3f(2x).

Would performing the stretches in reverse order change the final result?

b)
$$y = f(3x + 6)$$

 $y = \frac{1}{5}(3(x+2)) + 0$

b) First, rewrite y = f(3x + 6) in the form y = af(b(x - h)) + k. This makes it easier to identify specific transformations.

$$y = f(3x + 6)$$

 $y = f(3(x + 2))$ Factor out the coefficient of x .
For $y = f(3(x + 2))$, $a = 1$, $b = 3$, $h = -2$, and $k = 0$.

The graph of y = f(x) is horizontally stretched about the y-axis by a factor of $\frac{1}{3}$ and then horizontally translated 2 units to the left.

• Apply the horizontal stretch by a factor of $\frac{1}{3}$ to obtain the graph of y = f(3x).

• Apply the horizontal translation of 2 units to the left to y = f(3x) to obtain the graph of f(3x) = f(3x).

Example 3

Write the Equation of a Transformed Function Graph

The graph of the function y = g(x)represents a transformation of the graph of y = f(x). Determine the equation of g(x) in the form y = af(b(x - h)) + k. Explain your answer.

Solution

Locate key points on the graph of f(x) and their image points on the graph of g(x). graph of g(x). b=4 $a = \partial$

$$(-4, 4) \rightarrow (-8, 10)$$

$$(0, 0) \rightarrow (-7, 2)$$

$$(4, 4) \rightarrow (-6, 10)$$

The equation of the transformed function is g(x) = 2f(4(x + 7)) + 2.

How could you use the mapping

$$(x, y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$$
 to verify this equation?

(
$$(x,y) \longrightarrow (-8,10)$$

 $(+4,4) \longrightarrow (-8,10)$

$$(-4,4) \longrightarrow (-8,10)$$

17. The graph of the function y = 2x² + x + 1 is stretched vertically about the x-axis by a factor of 2, stretched horizontally about the y-axis by a factor of ¹/₃, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.

is stretched vertically about the *x*-axis by a factor of 2. stretched horizontally about the *y*-axis by a factor of $\frac{1}{3}$, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.

Homework

finish #3-6 on page 39

