homework

Examine the function $f(x)=\frac{x^{2}}{1-x^{2}}$ with respect to...

- Intercepts
- Symmetry
- Asymptotes
- Intervals of Increase or Decrease
- Local Maximum and Minimum values
- Concavity and Points of Inflection
- Sketch the Curve

$$
f(x)=\frac{x^{2}}{1-x^{2}}\left|f^{\prime}(x)=\frac{\partial x}{\left(1-x^{2}\right)^{2}}\right| f^{\prime \prime}(x)=\frac{\partial+6 x^{2}}{\left(1-x^{2}\right)^{3}}=\frac{2\left(3 x^{2}+1\right)}{\left(1-x^{2}\right)^{3}}
$$

(1) Intercepts:
x int $(y=0) \quad y$ int $(x=0)$
(2) Symmetry:

$$
\begin{array}{ll}
x^{2}=0 & y=\frac{0}{1}=0 \\
x=0 & (0,0) \\
(0,0) &
\end{array}
$$

(3) Asymptotes.
$H A: y=-1$
VA: 1

$$
\begin{aligned}
& \begin{array}{ll}
1-x^{2}=0 & \lim _{x \rightarrow-1^{-}} \frac{(t)}{(t)}=-\infty \\
1=x^{2} & x=1.01 \\
\pm 1=x & \lim _{x \rightarrow 1^{+}} \frac{(t)}{(A)}=+\infty \\
x \rightarrow-0.9 \\
&
\end{array} \\
& \lim _{x \rightarrow 1^{-}} \frac{(t)}{(\epsilon)}=+\infty \\
& \lim _{x \rightarrow 1^{+}} \frac{(1)}{(-)}=-\infty
\end{aligned}
$$

$$
\begin{aligned}
& \text { CV: } x=0, \pm 1
\end{aligned}
$$

(5) Max/Mins:

$$
F(0)=0 \quad(0,0) \text { min }_{s}
$$

(1) In: $x= \pm$ Lection Points $f(-1)=$ undefined

No Inflection Points $x= \pm 11$
$f(1)=$ undefined

Examine the function $f(x)=3 x^{5}-5 x^{3}$ with respect to...

- Intercepts
- Symmetry
- Asymptotes
- Intervals of Increase or Decrease
- Local Maximum and Minimum values
- Concavity and Points of Inflection
- Sketch the Curve

$$
\begin{array}{l|l|l}
f(x)=3 x^{5}-5 x^{3} & f^{\prime}(x)=15 x^{4}-15 x^{2} & f^{\prime \prime}(x)=60 x^{3}-30 x \\
f(x)=x^{3}\left(3 x^{2}-5\right) & f^{\prime}(x)=15 x^{2}\left(x^{2}-1\right) & f^{\prime \prime}(x)=30 x\left(2 x^{2}-1\right)
\end{array}
$$

$$
\begin{array}{lll}
\text { (1) Intercepts: } & & \text { (2) Symmetry: } \\
x \text { int }(y=0) & y \text { int }(x=0 & f(x)=3(x)^{5}-5(-x)^{3} \\
x=0, \pm \sqrt{5 / 3} & y=0 & =-3 x^{5}+5 x^{3} \\
(0,0)(1.29,0)(-1.29,0) & (0,0) & \therefore f(-x)=-f(x) \text { odd }
\end{array}
$$

(3) Asymptotes. None

$$
\begin{aligned}
& \text { (4) Intervals of InclDc max } \\
& F^{\prime}(x)=15 x^{2}\left(x^{2}-1\right) \xrightarrow[(-2)-1 \frac{1}{2} 0 \frac{1}{2} 1(2)]{\stackrel{\downarrow}{4}} \operatorname{Dxc} \text { on }(-1,1) \\
& C V: x=0, \pm 1
\end{aligned}
$$

(5) Max/mins:

$$
\begin{aligned}
f(-1) & =3(-1)^{5}-5(-1)^{3} \quad(-1,2) \max \\
& =-3+5 \\
& =2 \\
f(1) & =3(1)^{5}-5(1)^{3} \quad(1,-2) \min \\
& =3-5 \\
& =-2
\end{aligned}
$$

(b) Concavity:

$$
\begin{aligned}
& \text { N: } x=0, \pm \sqrt{\frac{1}{2}}
\end{aligned}
$$

- Inflection Points.

$$
\begin{aligned}
& F(\sqrt{2}) \approx-0.53+1.767 \approx 1.238 \quad(-0.707,1.238) \\
& f(0)=0 \quad(0,0) \\
& F((\sqrt[1]{2}) \approx 0.53-1.767 \approx-1.238 \quad(0.707,-1.238)
\end{aligned}
$$

Examine the function $f(x)=\frac{x^{2}}{x-7}$ with respect to...

- Intercepts
- Symmetry
- Asymptotes
- Intervals of Increase or Decrease Ω
- Local Maximum and Minimum values $\sqrt{ }$
- Concavity and Points of Inflection $\sqrt{ }$
- Sketch the Curve

$$
f(x)=\frac{x^{2}}{x-7}\left|F^{\prime}(x)=\frac{x(x-14)}{(x-7)^{2}}\right| F^{\prime \prime}(x)=\frac{98}{(x-7)^{3}}
$$

(1) Intercepts:

$$
\begin{array}{ll}
x \operatorname{int}(y=0) & y \text { int }(x=0) \\
x^{2}=0 & y=\frac{0}{-7}=0
\end{array}
$$

(d) Symmetry

$$
f(-x)=\frac{(-)^{2}}{(-x)-7}=\frac{x^{2}}{-x-7}
$$

$$
\begin{array}{ll}
x=0 & (0,0) \\
(0,0)
\end{array} \quad \text { None. }
$$

(3) Asymptotes.

$$
\text { VA: } x=7 \quad \lim _{\substack{x \rightarrow 7^{-} \\ x=6,99}} \frac{(t)}{(-)}=-\infty \quad \lim _{\substack{x \rightarrow 7^{+} \\ x=7,01}} \frac{(t)}{4}=+\infty
$$

SA: $\quad x-7 \frac{x+7}{x^{2}}$

$$
\frac{-\left(x^{2}-7 x\right)}{7 x}
$$

$$
y=x+7
$$

$$
m=\frac{1}{1} \quad b=7
$$

$$
\frac{-(x x-49)}{49 h}
$$

$$
\begin{aligned}
& \text { (4) Intervals of Inc } / D_{\text {ec }}^{\text {max }}
\end{aligned}
$$

(6) Concavity:

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{98}{(x-7)^{3}} \\
& C v: x=7
\end{aligned}
$$

(1) Inflection Point:

$$
f(7)=\text { undefined } \quad x=7 \text { is V.A. No I.P. }
$$

