Complex Numbers

Recall from last year that the graphs of some quadratic functions do not cross the x-axis. These functions have roots (x-intercepts) that are members of the *complex number system*

A complex number is of the form a+bi where a and b are real numbers and

$$i=\sqrt{-1}$$

$$i^2 = -1$$

$$\sqrt{-9}$$

$$\sqrt{-12}$$

$$\sqrt{-64}$$

Simplify the following:

$$(2+3i)+(4-6i)$$

$$3(2+6i)-3(4+2i)$$

 $6+18i-12-6i$
 $-6+12i$

Find each product:

$$(3+2i)(4-i)$$

 $13-3i+8i-3(i^2)$
 $13+5i-3(-1)$
 $13+5i+3$
 $14+5i$

$$(2+3i)(2-3i)$$
 $4-6i+6i-9(3)$
 $4-9(-1)$
 $4+9$
 13

You may have noticed in the last example the product resulted in the real number 13. This is because (2+3i) and (2-3i) are called *complex conjugates*

In general
$$a + bi$$
 is the complex conjugate of $a - bi$
 $-3 + 3i$

Use complex conjugates to solve the following:

Recultize the denominator

 $3 \cdot i$
 $2i \cdot i$
 $3i$
 $3i$

Homework #1-7
Omit 3 b, c