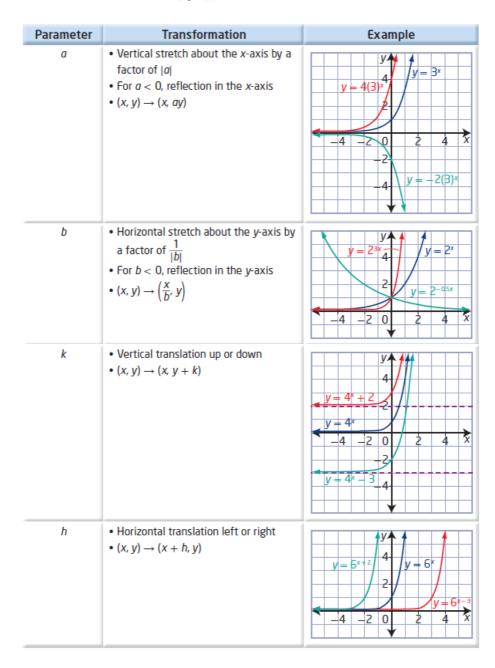
Transformations of Exponential Functions

Focus on...

- applying translations, stretches, and reflections to the graphs of exponential functions
- representing these transformations in the equations of exponential functions
- · solving problems that involve exponential growth or decay

Link the Ideas

The graph of a function of the form $f(x) = a(c)^{b(x-h)} + k$ is obtained by applying transformations to the graph of the base function $y = c^x$, where c > 0.



Example 1

Apply Transformations to Sketch a Graph

Consider the base function $y = 3^x$. For each transformed function,

- i) state the parameters and describe the corresponding transformations
- ii) create a table to show what happens to the given points under each transformation

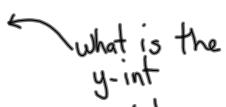
$y = 3^x$	
$\left(-1,\frac{1}{3}\right)$	
(0, 1)	
(1, 3)	
(2, 9)	
(3, 27)	

- iii) sketch the graph of the base function and the transformed function
- iv) describe the effects on the domain, range, equation of the horizontal asymptote, and intercepts
- a) $y = 2(3)^{x-4}$

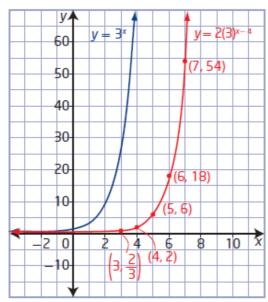
Solution

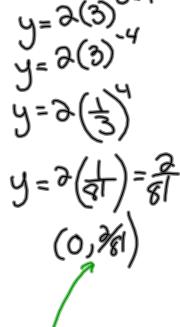
- a) i) Compare the function $y = 2(3)^{x-4}$ to $y = a(c)^{b(x-h)} + k$ to determine the values of the parameters.
 - b = 1 corresponds to no horizontal stretch.
 - a = 2 corresponds to a vertical stretch of factor 2. Multiply the *y*-coordinates of the points in column 1 by 2.
 - h = 4 corresponds to a translation of 4 units to the right. Add 4 to the *x*-coordinates of the points in column 2.
 - k = 0 corresponds to no
 - ii) Add columns to the table representing the transformations.

gint	$y = 3^x$	$y = 2(3)^x$	$y = 2(3)^{x-4}$
	$\left(-1,\frac{1}{3}\right)$	$\left(-1,\frac{2}{3}\right)$	$\left(3, \frac{2}{3}\right)$
	(0, 1)	(0, 2)	(4, 2)
	(1, 3)	(1, 6)	(5, 6)
	(2, 9)	(2, 18)	(6, 18)
	(3, 27)	(3, 54)	(7, 54)



iii) To sketch the graph, plot the points from column 3 and draw a smooth curve through them.





iv) The domain remains the same: $\{x \mid x \in R\}$.

The range also remains unchanged: $\{y \mid y > 0, y \in R\}$.

The equation of the asymptote remains as y = 0.

There is still no *x*-intercept, but the *y*-intercept changes to $\frac{2}{81}$ or approximately 0.025.

b)
$$y = \frac{1}{2}$$

Homework

$$a = \frac{1}{5} \quad b = \frac{1}{5} \quad h = 0 \quad K = -5$$

$$(x,y) \longrightarrow (5x, -\frac{1}{5}y - 5)$$

i) state the parameters and describe the corresponding transformations

- i) state the parameters and describe the corresponding transformations
- ii) create a table to show what happens to the given points under each transformation
- iii) sketch the graph of the base function and the transformed function
- iv) describe the effects on the domain, range, equation of the horizontal asymptote, and intercepts

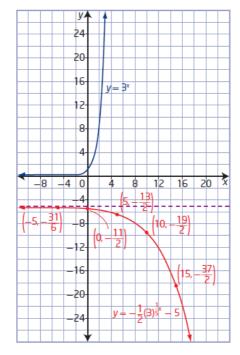
Solution

- **b)** i) Compare the function $y = -\frac{1}{2}(3)^{\frac{1}{5}x} 5$ to $y = a(c)^{b(x-h)} + k$ to determine the values of the parameters.
 - $b = \frac{1}{5}$ corresponds to a horizontal stretch of factor 5. Multiply the *x*-coordinates of the points in column 1 by 5.
 - $a = \frac{1}{2}$ corresponds to a vertical stretch of factor $\frac{1}{2}$ and a reflection in the *x*-axis. Multiply the *y*-coordinates of the points in column 2 by $-\frac{1}{2}$.
 - h = 0 corresponds to no horizontal translation.
 - k = -5 corresponds to a translation of 5 units down. Subtract 5 from the *y*-coordinates of the points in column 3.
 - ii) Add columns to the table representing the transformations.

$y = 3^x$	$y=3^{\frac{1}{5}x}$	$y = -\frac{1}{2}(3)^{\frac{1}{5}x}$	$y = -\frac{1}{2}(3)^{\frac{1}{5}x} - 5$
$\left(-1,\frac{1}{3}\right)$	$\left(-5,\frac{1}{3}\right)$	$\left(-5, -\frac{1}{6}\right)$	$\left(-5, -\frac{31}{6}\right)$
(0, 1)	(0, 1)	$\left(0,-\frac{1}{2}\right)$	$\left(0,-\frac{11}{2}\right)$
(1, 3)	(5, 3)	$(5, -\frac{3}{2})$	$(5, -\frac{13}{2})$
(2, 9)	(10, 9)	$\left(10,-\frac{9}{2}\right)$	$(10, -\frac{19}{2})$
(3, 27)	(15, 27)	$\left(15, -\frac{27}{2}\right)$	$\left(15, -\frac{37}{2}\right)$

iii) To sketch the graph, plot the points from column 4 and draw a smooth curve through them.

Why do the exponential curves have different horizontal asymptotes?



iv) The domain remains the same: $\{x \mid x \in R\}$.

The range changes to $\{y \mid y < -5, y \in \mathbb{R}\}$ because the graph of the transformed function only exists below the line y = -5.

The equation of the asymptote changes to y = -5.

There is still no x-intercept, but the y-intercept changes to $-\frac{11}{2}$ or -5.5.

Homework

#1-7 and #10 on page 354

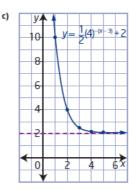
7.2 Transformations of Exponential Functions, pages 354 to 357

- 1. a) C
- **b)** D
- c) A

- **b)** A
- c) B
- **3. a)** a = 2: vertical stretch by a factor of 2; b = 1: no horizontal stretch; h = 0: no horizontal translation; k = -4: vertical translation of 4 units down
 - **b)** a = 1: no vertical stretch; b = 1: no horizontal stretch; h = 2: horizontal translation of 2 units right; k = 3: vertical translation of 3 units up
 - c) a = -4: vertical stretch by a factor of 4 and a reflection in the x-axis; b = 1: no horizontal stretch; h = -5: horizontal translation of 5 units left; k = 0: no vertical translation
 - d) a = 1: no vertical stretch; b = 3: horizontal stretch by a factor of $\frac{1}{3}$; h = 1: horizontal translation of
 - 1 unit right; k=0: no vertical translation e) $a=-\frac{1}{2}$: vertical stretch by a factor of $\frac{1}{2}$ and a reflection in the x-axis; b = 2: horizontal stretch by a factor of $\frac{1}{2}$; h = 4: horizontal translation of 4 units right; k = 3: vertical translation of 3 units up
 - **4. a)** C: reflection in the x-axis, a < 0 and 0 < c < 1, and vertical translation of 2 units up, k = 2
 - **b)** A: horizontal translation of 1 unit right, h = 1, and vertical translation of 2 units down, k = -2
 - c) D: reflection in the x-axis, a < 0 and c > 1, and vertical translation of 2 units up, k = 2
 - d) B: horizontal translation of 2 units right, h = 2, and vertical translation of 1 unit up, k = 1
 - **5. a)** $a = \frac{1}{2}$: vertical stretch by a factor of $\frac{1}{2}$; b = -1: reflection in the y-axis; h = 3: horizontal translation of 3 units right 3; k = 2: vertical translation of 2 units un

	uansiauon oi 2 units up					
b)	y = 4 ^x	y = 4-x	$y=\frac{1}{2}(4)^{-x}$	$y = \frac{1}{2}(4)^{-(x-3)} + 2$		
	$\left(-2, \frac{1}{16}\right)$	$\left(2, \frac{1}{16}\right)$	$\left(2, \frac{1}{32}\right)$	(5, <u>65</u>)		
	$\left(-1,\frac{1}{4}\right)$	$\left(1,\frac{1}{4}\right)$	$\left(1, \frac{1}{8}\right)$	$\left(4, \frac{17}{8}\right)$		
	(0, 1)	(0, 1)	$\left(0, \frac{1}{2}\right)$	$\left(3, \frac{5}{2}\right)$		
	(1, 4)	(-1, 4)	(-1,2)	(2, 4)		
	(2, 16)	(-2, 16)	(-2, 8)	(1, 10)		

- f) a = -1: reflection in the x-axis; b = 2: horizontal stretch by a factor of $\frac{1}{2}$; h = 1: horizontal translation of 1 unit right; k = 0: no vertical translation
- a = 1.5: vertical stretch by a factor of 1.5; $b = \frac{1}{2}$: horizontal stretch by a factor of 2; h = 4: horizontal translation of 4 units right; $k = -\frac{5}{2}$: vertical translation of $\frac{5}{2}$ units down



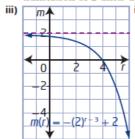
d) domain $\{x \mid x \in \mathbb{R}\},\$ range $\{y \mid y > 2, y \in R\},\$ horizontal asymptote y = 2, y-intercept 34

6. a) i), ii) a=2: vertical stretch by a factor of 2; b=1: no horizontal stretch; h=0: no horizontal translation; k=4: vertical translation of 4 units up

(iii) $y = 2(3)^x + 4 = 4$ $y = 2(3)^x + 4 = 4$ $y = 2(3)^x + 4 = 4$

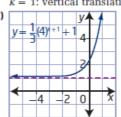
iv) domain $\{x \mid x \in \mathbb{R}\}$, range $\{y \mid y > 4, y \in \mathbb{R}\}$, horizontal asymptote y = 4, y-intercept 6

b) i), ii) a=-1: reflection in the x-axis; b=1: no horizontal stretch; h=3: horizontal translation of 3 units right; k=2: vertical translation of 2 units up



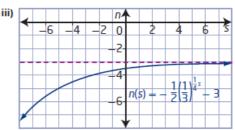
iv) domain $\{r \mid r \in \mathbb{R}\},$ range $\{m \mid m < 2, m \in \mathbb{R}\},$ horizontal asymptote m = 2, m-intercept $\frac{15}{8},$ r-intercept 4

c) i), ii) $a = \frac{1}{3}$: vertical stretch by a factor of $\frac{1}{3}$; b = 1: no horizontal stretch; h = -1: horizontal translation of 1 unit left; k = 1: vertical translation of 1 unit up



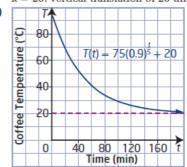
iv) domain $\{x \mid x \in \mathbb{R}\}$, range $\{y \mid y > 1, y \in \mathbb{R}\}$, horizontal asymptote y = 1, y-intercept $\frac{7}{3}$

d) i), ii) $a=-\frac{1}{2}$: vertical stretch by a factor of $\frac{1}{2}$ and a reflection in the *x*-axis; $b=\frac{1}{4}$: horizontal stretch by a factor of 4; h=0: no horizontal translation; k=-3: vertical translation of 3 units down



iv) domain $\{s \mid s \in \mathbb{R}\}$, range $\{n \mid n < -3, n \in \mathbb{R}\}$, horizontal asymptote n = -3, n-intercept $-\frac{7}{2}$

- **7. a)** horizontal translation of 2 units right and vertical translation of 1 unit up; $y = \left(\frac{1}{2}\right)^{x-2} + 1$
 - b) reflection in the *x*-axis, vertical stretch by a factor of 0.5, and horizontal translation of 3 units right; $v = -0.5(5)^{x-3}$
 - c) reflection in the x-axis, horizontal stretch by a factor of $\frac{1}{3}$, and vertical translation of 1 unit up; $y = -\left(\frac{1}{4}\right)^{3x} + 1$
 - **d)** vertical stretch by a factor of 2, reflection in the *y*-axis, horizontal stretch by a factor of 3, horizontal translation of 1 unit right, and vertical translation of 5 units down; $y = 2(4)^{\frac{1}{3}(x-1)} 5$
- **10. a)** a=75: vertical stretch by a factor of 75; $b=\frac{1}{5}$: horizontal stretch by a factor of 5; h=0: no horizontal translation; k=20: vertical translation of 20 units up



c) 29.1 °C d) final temperature of the coffee