Understanding Logarithms

Focus on...

- demonstrating that a logarithmic function is the inverse of an exponential function
- sketching the graph of $y = \log_c x$, c > 0, $c \ne 1$
- determining the characteristics of the graph of $y = \log_c x$, c > 0, $c \ne 1$
- · explaining the relationship between logarithms and exponents
- expressing a logarithmic function as an exponential function and vice versa
- evaluating logarithms using a variety of methods

For the exponential function $y = c^x$, the inverse is $x = c^y$. This inverse is also a function and is called a **logarithmic function**. It is written as $y = \log_c x$, where c is a positive number other than 1.

Logarithmic Form

Exponential Form

Since our number system is based on powers of 10, logarithms with base 10 are widely used and are called common logarithms. When you write a common logarithm, you do not need to write the base. For example, $\log 3$ means $\log_{10} 3$.

logarithmic function

a function of the form y = log_c x, where c > 0 and c ≠ 1, that is the inverse of the exponential function y = c^x

logarithm

- an exponent
- in x = c^y, y is called the logarithm to base c of x

common logarithm

 a logarithm with base 10 Write each of the following in logarithmic form

Write each of the following in exponential form

Evaluating a Logarithm

Evaluate.

- a) $\log_7 49$
- **b)** $\log_6 1$
- c) log 0.001
- d) $\log_2 \sqrt{8}$

$$J_x = J_s$$

$$X = 0$$

$$10^{x} = 10^{-3}$$

$$3x = 18$$

$$4x = 18$$

$$9_x = (9_3)_{\beta}$$

$$3_x = \frac{3}{3}$$

.

-0

Determine an Unknown in an Expression in Logarithmic Form

Determine the value of x.

- a) $\log_5 x = -3$
- **b)** $\log_{y} 36 = 2$
- c) $\log_{64} x = \frac{2}{3}$

a)
$$\log_5 x = -3$$
 b) $\log_x 36 = 3$ c) $\log_6 x = \frac{3}{3}$

$$5^{-3} = x$$

$$x = \pm 6$$

$$5^{-3} = x$$

$$x = \pm 6$$

$$x = 6$$

$$x$$

Questions from Homework

General Properties of Logarithms:

If C > 0 and $C \ne 1$, then... (i) $\log_C 1 = 0$ (ii) $\log_C c^x = x$ (iii) $c^{\log_C x} = x$

(i)
$$\log_{c} 1 = 0$$

(ii)
$$\log_{\mathbf{c}} \mathbf{c}^{\mathbf{x}} = x$$

(iii)
$$c^{\log_{c} x} = x$$

Did You Know?

The input value for a logarithm is called an argument. For example, in the expression log₆ 1, the argument is 1.

(i)
$$\log_5 l = 0$$
 (ii) $\log_5 3^3 = 3$ (iii) $\gamma^{\log_7 49} = 49$

$$5^{\log_5 10} = 10$$

Graph the Inverse of an Exponential Function

- a) State the inverse of $f(x) = 3^x$.
- b) Sketch the graph of the inverse. Identify the following characteristics of the inverse graph:
 - the domain and range
 - the x-intercept, if it exists
 - the y-intercept, if it exists
 - · the equations of any asymptotes

$$f(x)=3^{x}$$

(3)
$$y = \log_3 x$$

(4) $5^{-1}(x) = \log_3 x$

Solution

a) The inverse of y = f(x) = 3^x is x = 3^y or, expressed in logarithmic form, y = log₃ x. Since the inverse is a function, it can be written in function notation as f⁻¹(x) = log₃ x.

How do you know that $y = \log_3 x$ is a function?

b) Set up tables of values for both the exponential function, f(x), and its inverse, $f^{-1}(x)$. Plot the points and join them with a smooth curve.

	(x,y)	→(y,x)
$f(x) = 3^x$		f^{-1}
X	У	X
-3	<u>1</u> 27	<u>1</u> 27
-2	<u>1</u>	$\frac{1}{9}$
-1	<u>1</u> 3	$\frac{1}{3}$
0	1	1
1	3	3

2

3

٠ (ر			
$f^{-1}(x) = \log_3 x$			
X	У		
<u>1</u> 27	-3		
$\frac{\frac{1}{27}}{\frac{1}{9}}$	-2		
<u>1</u> 3	-1		
1	0	X	
3	1		
9	2		
27	3		

The graph of the inverse, $f^{-1}(x) = \log_3 x$, is a reflection of the graph

of $f(x) = 3^x$ about the line y = x. For $f^{-1}(x) = \log_3 x$,

- the domain is $\{x \mid x > 0, x \in R\}$ and the range is $\{y \mid y \in R\}$
- the x-intercept is 1

9

27

- there is no y-intercept
- the vertical asymptote, the *y*-axis, has equation x = 0; there is no horizontal asymptote

How do the characteristics of $f^{-1}(x) = \log_3 x$ compare to the characteristics of $f(x) = 3^x$?

Key Ideas

- A logarithm is an exponent.
- Equations in exponential form can be written in logarithmic form and vice versa.

Exponential Form Logarithmic Form $x = c^y$ $y = \log_c x$

- The inverse of the exponential function $y=c^x$, c>0, $c\neq 1$, is $x=c^y$ or, in logarithmic form, $y=\log_c x$. Conversely, the inverse of the logarithmic function $y=\log_c x$, c>0, $c\neq 1$, is $x=\log_c y$ or, in exponential form, $y=c^x$.
- The graphs of an exponential function and its inverse logarithmic function are reflections of each other in the line y = x, as shown.
- For the logarithmic function $y = \log_c x$, c > 0, $c \neq 1$,
 - the domain is $\{x \mid x > 0, x \in \mathbb{R}\}$
 - the range is $\{y \mid y \in R\}$
 - the x-intercept is 1
 - the vertical asymptote is x = 0, or the y-axis
- A common logarithm has base 10. It is not necessary to write the base for common logarithms:

Homework

#1-5, 8, 10, 12, 13, 17 on page 380

$$1000000 = 1.1^{t}$$
 $195 = 1.1^{t}$
 $195 = 1.1^{t}$
 $195 = t$
 $195 = t$

8.1 Understanding Logarithms, pages 380 to 382

1. a) i)

- **2. a)** $\log_{12} 144 = 2$
 - c) $\log_{10} 0.000 \ 01 = -5$
- 3. a) $5^2 = 25$
 - c) $10^6 = 1000000$

- **4. a)** 3 **b)** 0
- **5.** a = 4; b = 5

- ii) $y = \log_2 x$
- iii) domain $\{x \mid x > 0, x \in R\},\$ range $\{y \mid y \in R\}$, x-intercept 1, no y-intercept, vertical asymptote x = 0
- ii) $y = \log_1 x$
- iii) domain $\{x\mid x>0,\,x\in R\},$ range $\{y \mid y \in R\}$, x-intercept 1, no y-intercept, vertical asymptote
- **b)** $\log_8 2 = \frac{1}{3}$
- $\log_{7}(y+3)=2x$
- $8^{\frac{2}{3}} = 4$
- $11^y = x + 3$
- d) -3

domain $\{x \mid x > 0, x \in R\}$, range $\{y \mid y \in R\}$, x-intercept 1, no y-intercept, vertical asymptote x = 0

d) 8

- **10.** They are reflections of each other in the line y = x.
- 11. a) They have the exact same shape.
 - One of them is increasing and the other is decreasing.
- 12. a) 216

8. a) $y = \log_5 x$

- **b)** 81
- 13. a) 7
- **b)** 6
- 14. a) 0
- b)
- **15**. −1
- **16.** 16
- **17.** a) $t = \log_{1.1} N$
- b) 145 days

c) 64

- 18. The larger asteroid had a relative risk that was 1479 times as dangerous.
- 19. 1000 times as great
- **20.** 5
- **21.** m = 14, n = 13
- **22.** 4n
- **23.** $y = 3^{2^x}$

Product Law of Logarithms

The logarithm of a product of numbers can be expressed as the sum of the logarithms of the numbers.

$$\log_c MN = \log_c M + \log_c N$$

Proof

Let $\log_c M = x$ and $\log_c N = y$, where M, N, and c are positive real numbers with $c \neq 1$.

Write the equations in exponential form as $M = c^x$ and $N = c^y$:

$$MN = (c^x)(c^y)$$
 $MN = c^{x+y}$ Apply the product law of powers.
 $\log_c MN = x + y$ Write in logarithmic form.
 $\log_c MN = \log_c M + \log_c N$ Substitute for x and y .

Ex:
$$\log_3 x^3 y = \log_3 x^3 + \log_3 y$$

 $\log_3 x^3 + \log_3 x^3 = \log_3 (27 \times 3) = \log_3 x^3 = 4$

Quotient Law of Logarithms

The logarithm of a quotient of numbers can be expressed as the difference of the logarithms of the dividend and the divisor.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

Proof

Let $\log_c M = x$ and $\log_c N = y$, where M, N, and c are positive real numbers with $c \neq 1$.

Write the equations in exponential form as $M = c^x$ and $N = c^y$:

$$\frac{M}{N} = \frac{c^x}{c^y}$$

$$\frac{M}{N} = c^{x-y}$$

Apply the quotient law of powers.

$$\log_c \frac{M}{N} = x - y$$

Write in logarithmic form.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

Substitute for x and y.

$$\log_5 50 - \log_5 \partial = \log_5 \left(\frac{50}{2}\right) = \log_5 25 = \partial$$

Power Law of Logarithms

The logarithm of a power of a number can be expressed as the exponent times the logarithm of the number.

$$\log_c M^p = P \log_c M$$

How could you prove the quotient law using the product law and the power law?

Proof

Let $\log_c M = x$, where M and c are positive real numbers with $c \neq 1$.

Write the equation in exponential form as $M = c^x$.

Let P be a real number.

$$M=c^x$$
 $M^p=(c^x)^p$ $M^p=c^{xp}$ Simplify the exponents. $\log_c M^p=xP$ Write in logarithmic form. $\log_c M^p=(\log_c M)P$ Substitute for x . $\log_c M^p=P\log_c M$

The laws of logarithms can be applied to logarithmic functions, expressions, and equations.

Use the Laws of Logarithms to Expand Expressions

Write each expression in terms of individual logarithms of x, y, and z.

write each expression in terms of individual logarithms of
$$x$$
, y , and z .

a) $\log_5 \frac{xy}{z} = \log_5 x + \log_5 y - \log_5 z$

b) $\log_7 \sqrt[3]{x} = \log_7 x^{\frac{1}{3}} = \frac{1}{3}\log_7 x$

c) $\log_6 \frac{1}{x^2} = \log_6 x = -3\log_6 x$

d) $\log \frac{x^3}{y\sqrt{z}} = \log_7 x^{-\frac{1}{3}} - \log_7 x^{-\frac{1}{3}} = \log_7 x^{-\frac{1}{3}} = \log_7 x^{-\frac{1}{3}} - \log_7 x^{-\frac{1}{3}} = \log_7 x^{$

Use the Laws of Logarithms to Evaluate Expressions

Use the laws of logarithms to simplify and evaluate each expression. a)
$$\log_6 8 + \log_6 9 - \log_6 2 = \log_6 2 = \log_6 8 = 36$$

b) $\log_{7} 7\sqrt{7}$

c)
$$2 \log_2 12 - \left(\log_2 6 + \frac{1}{3} \log_2 27\right)$$

—0

Use the Laws of Logarithms to Simplify Expressions

Write each expression as a single logarithm in simplest form. State the restrictions on the variable.

a)
$$\log_7 x^2 + \log_7 x - \frac{5 \log_7 x}{2}$$

b)
$$\log_5 (2x - 2) - \log_5 (x^2 + 2x - 3)$$

$$|\log_{7} x^{3} + \log_{7} x - \frac{5}{3} \log_{7} x$$

$$= |\log_{7} x^{3} + \log_{7} x - \log_{7} x^{3}|$$

$$= |\log_{7} (\frac{x^{3}}{x^{3}}) - \frac{x^{3}}{x^{3}} = x^{3-\frac{5}{3}} = x^{\frac{6}{3}-\frac{5}{3}} = x^{\frac{1}{3}}$$

$$= |\log_{7} (\frac{x^{3}}{x^{5}})|$$

$$= |\log_{7} x^{3}|$$

Key Ideas

• Let P be any real number, and M, N, and c be positive real numbers with $c \neq 1$. Then, the following laws of logarithms are valid.

Name	Law	Description
Product	$\log_c MN = \log_c M + \log_c N$	The logarithm of a product of numbers is the sum of the logarithms of the numbers.
Quotient	$\log_c \frac{M}{N} = \log_c M - \log_c N$	The logarithm of a quotient of numbers is the difference of the logarithms of the dividend and divisor.
Power	$\log_c M^p = P \log_c M$	The logarithm of a power of a number is the exponent times the logarithm of the number.

• Many quantities in science are measured using a logarithmic scale. Two commonly used logarithmic scales are the decibel scale and the pH scale.

Do I really understand??...

- a) Express the following as a single logarithm... $2 \log_2 3^2 + \log_2 6 3 \log_2 3$
- b) Evaluate the following... $\log_2(32)^{\frac{1}{3}}$
- c) Express the following as a single logarithm... $\frac{1}{2} [(\log_5 a + 2\log_5 b) 3\log_5 c]$
- d) Express as a single logarithm in simplest form...

$$\frac{3}{4} \left[12 (\log_b x^2 - 2\log_b x) + 8\log_b \sqrt{x} - 4\log_b \frac{1}{x^7} \right]$$