Check Homework - Worksheet

MgSq/aq) + K3PQy/aq) —> Mg3PQy/s) + K2SQy/aq)

Complete Ionic:

Mg/cn + Sayen + Kt + Payen - Mg/Payer + Sayer + Sayer

Spectator Ton(s):

Vt. 504091

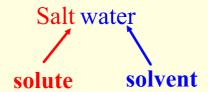
Net Ionic: 342+ + 2704an -> Mgs (PO4)215)

K+
$$NO_{3}^{-}$$

$$K(s) + Pb(NO_{3})_{2(eq)} \longrightarrow Pb(s) + KNO_{3(eq)}$$

$$K(s) + Pb_{eq}^{2+} + Nb_{3(eq)}^{-} \longrightarrow Pb(s) + K_{eq}^{+} + NO_{3(eq)}$$

$$Spectator Tan: NO_{3(eq)}$$

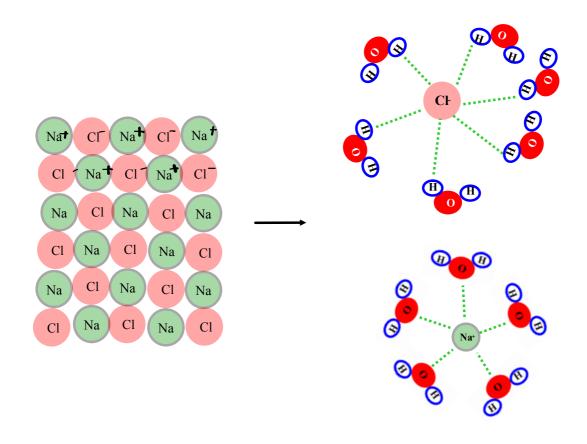

Solutions

<u>Solution</u> - homogeneous (uniform) mixture of a solute and a solvent.

⇒solute - substance dissolved

⇒solvent - substance doing dissolving (liquid)

Ex.



If the amount of solute that can dissolve in a solvent is large, then the solute is said to have a high solubility.

If the amount of solute that can dissolve in a solvent is small, then the solute is said to have a low solubility. — (5)

Solid substances formed from reactions in solutions are known as **precipitates**.

What happens when an ionic compound dissolves??

This process is called solvation.

Solution Formation

There are three factors that affect how fast a substance will dissolve:

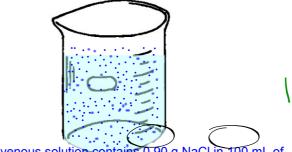
- 1) temperature
- 2) agitation (stirring)
- 3) surface area of dissolving particles

Concentration of a Solution


<u>concentration</u> - a numerical ratio comparing the quantity of solute to the quantity of solution.

 \Rightarrow units: g/L or g/mL (solutes that are solids in pure form)

<u>molar concentration (molarity)</u> - the amount of moles of solute dissolved in one litre of solvent


⇒units: mol/L

<u>dilute</u> - a solution that has a small amount of solute as compared to the amount of solvent

<u>dilution</u> - process of adding more solvent to cause a solution to become more dilute

<u>concentrated</u> - a solution that has a large amount of solute as compared to the amount of solvent

Ex. An intravenous solution contains 0.90 g NaCl in 100.mL of solution. What is the molarity of this solution?

$$m = 0.909$$
 0.909 NaCl x 58.44 g NaCl $V = 108.1864$ NaCl NaCl (1x35.45) = 58.44 g [mol]

$$C = \frac{0.0154 \text{ mol}}{V}$$

$$C = \frac{0.0154 \text{ mol}}{0.100 \text{ L}}$$

Ex. What volume of solution is required to dissolve 1.75 mol to make a 0.95 mol/L solution of CaCO₃?

Ex. A sample of laboratory ammonia solution has a concentration of 14.8 mol/L. What mass of ammonia is present in a 25.0 mL sample of this solution?