4. HSO3641 + H2O(e)
$$= 1.23 \times 10^{-7}$$

[HSO3641] $= 1.23 \times 10^{-7}$

Water Equilibrium

Conductivity is due to the presence of ions. For water:

$$H_2O_{(1)} <==> H^+_{(aq)} + OH^-_{(aq)}$$

- therefore $K = [H^+][OH^-]$ is very small $[H_2O]$
- slight conductivity shows that equilibrium greatly favors water molecules (less than 2 H + per billion water)
- therefore the concentration of water in pure water and in dilute aqueous solutions is essentially constant and can be combined with the equilibrium constant to produce a new constant called the *Ion Product Constant*

Ionization Constant for water (ion product constant)

$$K_w = [H^+] [OH^-] = 1.0 \times 10^{-14}$$
 at SATP

Since [H+] and [OH-] are found in 1:1 ratio $(H_2O_{(l)} <==> H^+_{(aq)} + OH^-_{(aq)})$

 $[H^+_{(aq)}] = [OH^-_{(aq)}] = 1.0 \text{ x } 10^{-7} \text{ mol/L in } \textbf{neutral } \text{solutions}.$

<u>Arrhenius's Theory</u> - acid is a substance that ionizes water t produce H⁺ ions.

- additional ions produced by the acid increases the H⁺ concentration in the water. (more acid, more H⁺)

Therefore acids always have a $[H^+] > 10^{-7}$ mol/L

Basic solutions produce a [OH-] greater than 10-7 mol/L

K_w can be used to calculate either [H⁺] or [OH-]

since
$$K_w = [H^+] [OH-]$$
 then $[H^+] = K_w / [OH-]$
and $[OH-] = K_w / [H^+]$

Acid ×
Water 1.0 x 10-7 mol/L

5 1.0 x 10-7 mol/L

pH and pOH

$$pH = -log[H^{+}_{(aq)}]$$
 $pOH = -log[OH^{-}_{(aq)}]$ $[H^{+}_{(aq)}] = 10^{-pOH}$ $[OH^{-}_{(aq)}] = 10^{-pOH}$ $[OH^{-}_{(aq)}] = 10^{-pOH}$ $[OH^{-}_{(aq)}] = 1.0 \times 10^{-14}$

Ex. Calculate the pH of a solution where $[H_{(ao)}^+] = 3.24 \times 10^4 M$.

Ex. Calculate the concentration of hydroxide ions in a solutic with a pOH of 10.14.

with a poh of 10.14.

$$[OH_{ag}] = ID^{-poh}$$
 $[OH_{ag}] = ID^{-10.14}$
 $[OH_{ag}] = 7.2 \times ID^{-11} M$

Strong Acids

Calculate the concentration of the hydroxide ions, pH and pOH of a 0.15 mol/L solution of hydrochloric acid at 25°C.

Strong acids will always completely ionize

Strong Bases (Ionic Hydroxides)

Calculate the hydrogen ion concentration in a 0.25 mol/L solution of barium hydroxide.

Ba(OH)_{2(s)}
$$\longrightarrow$$
 Ba^{2t} + 2CH⁻an O.25mol/L O.50mol/L

$$K\omega = [H_{can}][OH_{can}]$$

$$[H_{can}] = K\omega = \frac{1.0 \times 10^{-14}}{0.50 \text{ M}} = \frac{2.0 \times 10^{-14} \text{ M}}{0.50 \text{ M}}$$

