Logarithms

exponential form

 $x = b_{\perp}^{y}$

Say "the base b to the exponent y is x."

logarithmic form

 $y = \log_b x$

Say "y is the exponent to which you raise base b to get the answer x."

Example 1

Write each of the following in logarithmic form

a)
$$32 = 2^5$$

b)
$$2^{-5} = \frac{1}{32}$$

c)
$$x = 10^y$$

a)
$$32 = 2^5$$
 b) $2^{-5} = \frac{1}{32}$ c) $x = 10^y$

Solutions

Compare $x = b^y \longrightarrow y = \log_b x$

a)
$$32 = 2^5 - 5 = \log_2 32$$

$$5 = \log_2 32$$

b)
$$2^{-5} = \frac{1}{32} \leftarrow -5 = \log_2\left(\frac{1}{32}\right)$$

c)
$$x = 10^y$$
 \longrightarrow $y = \log_{10} x$
 $y = \log x$ (common logarithm)

When writing logarithms or evaluating expressions involving logarithms, you will find it useful to bear in mind the equivalent exponential form.

$$x = b^y \longleftrightarrow y = \log_b x$$

Example 2

Evaluate each of the following.

- a) $\log_{10} 100$
- b) $\log_2 64$
- c) $\log_5 \sqrt{5}$

Solutions

a) $log_{10} 100 \longrightarrow Think$: to what exponent is the base 10 raised to obtain 100?

$$\lambda = 9$$

b)
$$\log_2 64$$

c)
$$\log_5 \sqrt{5}$$

Skills with logarithms are needed to solve equations involving logarithms. When solving these equations, you must remember the meanings of the exponential form and the logarithmic form.

$$x = b^y \longleftrightarrow y = \log_b x$$

$$\log_3 m = 4$$

$$3^4 = m$$

 $81 = m$

$$x = b^y \longleftrightarrow y = \log_b x$$

$$\log_8 4 = y$$

$$\left(\mathcal{G}_{3}\right)_{A}=\mathcal{G}_{3}$$

$$x = b^y \longleftrightarrow y = \log_b x$$

a)
$$\log_{x} 49 = 2$$
 b) $\log_{x} 4 = \frac{2}{3}$ c) $\log_{x} 81 = 4$
 $(x^{3})^{3} = (4^{3})^{$

When solving some logarithmic equations, or simplifying logarithmic expressions, you will use the following property.

$$b^{\log_b m} = m$$

a)
$$2^{\log_2 4} = 4$$

b)
$$7^{\log_7 2401} = 2401$$

Homework