Homework - Worksheet

$$H_{2}SO_{4(4)} \longrightarrow 2H_{(4)}^{+} + SO_{4(4)}^{2-}$$
 $0.624M$
 $1.248M$
 $PH + POH = 14.00$
 $PH = -log[H_{3}O_{(4)}^{+}]$
 $POH = 14.000 - (-0.096)$
 $PH = -log[1.248]$
 $PH = -0.096$

Entities in Water

....Think High vs. Low Solubility

NaCl_(s)

CaCO_{3(s)}

Naty Class

Entities in Water

....Think High vs. Low Solubility

NaOH_(s)

Vata, Ottas)

 $Ca(OH)_{2(s)}$

Entities in Water

....Think High vs. Low Solubility

 $HCl_{(g)}$

Haot Clay

Strong vs. Weak Acid (back cover)

CH₃COOH₍₁₎

(Hz cottan)

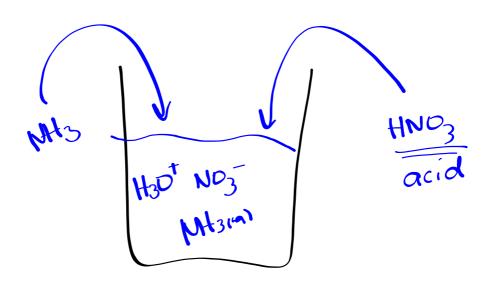
Entities in Water

....Think High vs. Low Solubility

 $C_{12}H_{22}O_{11(s)}$

C12H22011097

 $C_8H_{18(l)}$


Predicting Acid-Base Reactions

- 1. List all entities (ions, atoms, or molecules) initially present.
- 2. Identify all possible acids and bases, using Bronsted-Lowry definition.
- 3. Identify the strongest acid and strongest base, using table of acids and bases.
- 4. Transfer one proton from the acid to the base and predict the conjugate acid and conjugate base as products.
- 5. Predict the position of the equilibrium.

Sample Problem

Ammonium nitrate fertilizer is produced by the quantitative reaction of aqueous ammonia with nitric acid. Write a balanced acid-base equilibrium equation.

All entities in solution:

Sample Problem

Write a balanced acid-base equilibrium equation for the reaction of hydrofluoric acid and potassium sulfate.

Homework

Predicting Acid-Base Equilibria

Worksheet