Radian Measure

A radian is the angle subtended by an arc of length r (radius)

Use the above information to develop a formula to connect arc length, radius and the measure of an angle in radian measure...

Check-Up...

Arrange the following angles in descending order:

Find the angles co-terminal to Θ on the given domain

$$\theta = \frac{5\pi}{6} , \frac{2\pi}{6} \le \theta \le 8\pi$$

$$-12\pi \le \theta \le 48\pi$$

Homework

Page 176: #14, 15, 16

Find the area of the shaded region

Find the area of the shaded region

Area of Segment = Area of Sector - Area of Triangle

Questions from Homework

$$\Theta = \frac{4}{3} \operatorname{rads}$$

$$\begin{array}{ccc}
O & Find O & O & Sector Aroa & Central Angle \\
O = Q & Area of Circle & Complete Rev
\\
O = 16 & X & OTT
\end{array}$$

$$\frac{\chi}{\chi} = \frac{3}{4}$$

$$A^{p} = \frac{7(19)}{3} \sin(\frac{3}{4})$$

$$P^{q} = \frac{9}{7} \log \sin(\frac{3}{4})$$

(3)
$$A_{\Delta} = \frac{1}{3}r^{3}\sin\theta$$

(4)

 $A_{\Delta} = \frac{1}{3}(13)^{3}\sin(\frac{4}{3})$
 $A_{Seg} = A_{Sec} - A_{\Delta}$
 $A_{Seg} = 96cm^{3} - 70cm^{3}$
 $A_{\Delta} = \frac{1}{3}(144)(0.973)$
 $A_{Seg} = 36cm^{3}$

Applying our knowledge of rotations and radians...

- Ex. (a) If the large wheel rotates $2\pi/3$ radians, how many radians does the smaller wheel rotate?
 - (b) If the large wheel completes three revolutions, how much does the small wheel rotate in radians?
 - (c) If the small wheel rotates -15 π /4 radians, how many radians does the larger wheel rotate?

Angular Velocity

Angular velocity - amount of rotation around a central point per unit of time

$$v_a = \frac{\theta}{t}$$

$$\theta = \frac{a}{r}$$

$$\theta = \frac{a}{r}$$

$$v_a = \text{angular velocity}$$

$$t = \text{time}$$

$$\theta = \frac{a}{r}$$

$$a = \text{arc length}$$

$$r = \text{radius}$$

Ex. The roller on a computer printer makes 2200 rpm (revolution per minute). Find the roller's angular velocity.

Two flywheels are connected by a belt, as shown in the diagram below. The larger one has a radius of 6 cm and the smaller one has a radius of 2 cm.

- (a) If the small wheel rotates –300°, then through how many radians does the large wheel rotate?
- (b) If the large wheel rotates $\frac{7\pi}{6}$ radians, what distance would a point on the circumference of the small wheel rotate?

Ex. A small electrical motor turns at 2200 rpm.

- (a) Express the angular velocity in rad/s.
- (b) Find the distance a point 0.8cm from the center of rotation travels in 0.008 s.

a)
$$V_a = \frac{Q}{t} = \frac{4400\pi rads}{min} \cdot \frac{min}{60s} = \frac{73.3\pi rads}{sec}$$

$$\alpha = 0$$
r
 $\alpha = (1.843)(0.8)$
 $\alpha = 1.47$ cm

Homework

Ex. A Ferris Wheel rotates 3 times each minute. The passengers sit in seats that are 5 m from the center of the wheel. What is the angular velocity of the wheel in radians per second? What distance do the passengers travel in 6.5 seconds?

Answer: a) $V_a = 0.3 \text{ H rads/sec}$ b) $\alpha = 10.3 \text{ m}$

Ex. A bicycle wheel has a radius of 36 cm and is turning at 4.8m/s. Determine the angular velocity of this wheel?

Va = 13.3 rads/sec