Chemical Equations ### Law of Conservation of Mass In a chemical reaction, the total mass of the reactants is always equal to the total mass of the products. HCI + NaOH $$\longrightarrow$$ NaCI + H₂O \longrightarrow 59 \longrightarrow 509 \longrightarrow 509 # **Counting Atoms** CaSO₄ $$Mg(NO_3)_2$$ 2NaCl 3AI(HCO₃)₃ $$Mg NO_3$$ NO_3 #### Skeleton Chemical Equation Represents the chemical reaction, connecting the reactants to the products. Ex. methane + oxygen $$\Rightarrow$$ carbon dioxide + water Balancing Chemical Equations $$CH_4 \nearrow O_2 \Rightarrow CO_2 + \nearrow H_2O$$ Count the Atoms! | ATOM | REACTANTS | PRODUCTS | |-------------|-----------|----------| | C | | | | H | 4 | 24 | | 0 | 24 | 24 | ## Tips for balancing chemical equations: - You can only add coefficients (number in front of formula) - Balance each atom individually, unless it appears to be a polyatomic compound - Choose the 'easy' atoms first $$- \frac{CaCl_2 + 2KF - 2KCl + - GF_2}{2Kcl_2 + 3O_2}$$ $$- \frac{4Na_2Co_3}{2Na_2Co_3} - \frac{4Na_4 + 2C + 3O_2}{2C}$$ 8