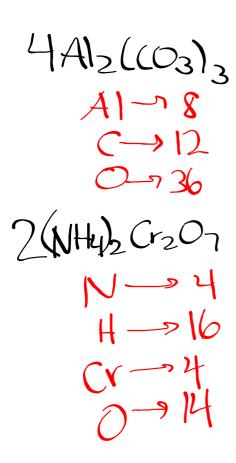
Chemical Equations

Law of Conservation of Mass

In a chemical reaction, the total mass of the reactants is always equal to the total mass of the products.

HCI + NaOH
$$\longrightarrow$$
 NaCI + H₂O \longrightarrow 59 \longrightarrow 509 \longrightarrow 509

Counting Atoms


CaSO₄

$$Mg(NO_3)_2$$

2NaCl

3AI(HCO₃)₃

$$Mg NO_3$$
 NO_3

Skeleton Chemical Equation

Represents the chemical reaction, connecting the reactants to the products.

Ex. methane + oxygen
$$\Rightarrow$$
 carbon dioxide + water Balancing Chemical Equations

$$CH_4 \nearrow O_2 \Rightarrow CO_2 + \nearrow H_2O$$

Count the Atoms!

ATOM	REACTANTS	PRODUCTS
C		
H	4	24
0	24	24

Tips for balancing chemical equations:

- You can only add coefficients (number in front of formula)
- Balance each atom individually, unless it appears to be a polyatomic compound
- Choose the 'easy' atoms first

$$- \frac{CaCl_2 + 2KF - 2KCl + - GF_2}{2Kcl_2 + 3O_2}$$

$$- \frac{4Na_2Co_3}{2Na_2Co_3} - \frac{4Na_4 + 2C + 3O_2}{2C}$$

8