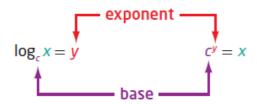
Understanding Logarithms

Chapter 8 (page 370)

Focus on...


 demonstrating that a logarithmic function is the inverse of exponential function

- sketching the graph of $y = \log_c x$, c > 0, $c \neq 1$
- determining the characteristics of the graph of $y = \log_c x$, c > 0, $c \ne 1$
- explaining the relationship between logarithms and exponents
- expressing a logarithmic function as an exponential function and vice versa
- · evaluating logarithms using a variety of methods

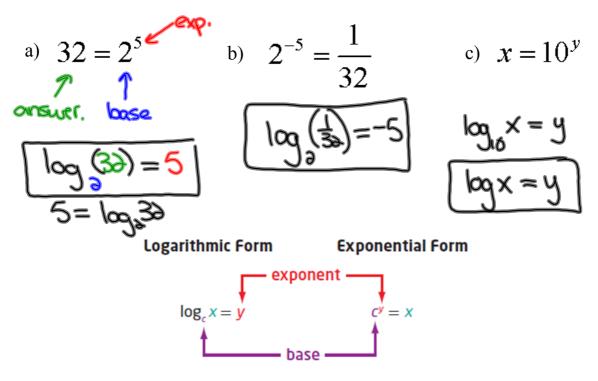
For the exponential function $y = c^x$, the inverse is $x = c^y$. This inverse is also a function and is called a **logarithmic function**. It is written as $y = \log_c x$, where c is a positive number other than 1.

Logarithmic Form

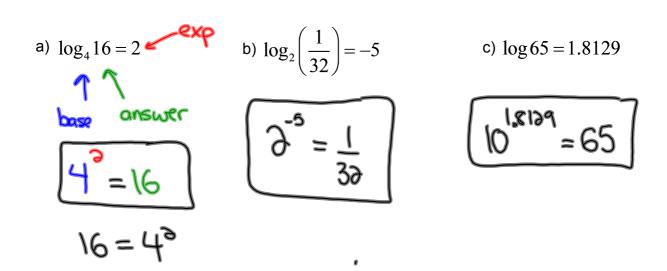
Exponential Form

Since our number system is based on powers of 10, logarithms with base 10 are widely used and are called common logarithms. When you write a common logarithm, you do not need to write the base. For example, $\log 3$ means $\log_{10} 3$.

logarithmic function


a function of the form y = log_c x, where c > 0 and c ≠ 1, that is the inverse of the exponential function y = c^x

logarithm


- an exponent
- in x = c^y, y is called the logarithm to base c of x

common logarithm

 a logarithm with base 10 Write each of the following in logarithmic form

Write each of the following in exponential form

Evaluating a Logarithm

Evaluate. (Solving for an exponent)

- a) log, 49
- c) log 0.001
- d) $\log_2 \sqrt{8}$

a) Let
$$x = \log_7 49$$
 $X = \log_7 49$
 $X = \log_7$

b) Let x = log 1

X = 100/6 1

$$1 = 0$$

$$1 = 0$$

e)
$$x = \log 0.001$$
 $10^{x} = 0.001$
 $10^{x} = 10^{-3}$
 $x = -3$
 $\log 0.001 = -3$

$$3^{x} = \log_{3} \sqrt{8}$$

$$3^{x} = \sqrt{8}$$

$$3^{x} = (8)^{3}$$

$$3^{x} = (3)^{3}$$

$$3^{x} = 3^{3}$$

$$x = 3^{3}$$

Determine an Unknown in an Expression in Logarithmic Form

Determine the value of x.

a)
$$\log_5 x = -3$$

b)
$$\log_x 36 = 2$$

c)
$$\log_{64} x = \frac{2}{3}$$

$$5^{-3} = X$$

$$\left(\frac{1}{5}\right)^{3} = X$$

$$\boxed{\frac{1}{65} = x}$$

$$X = -6$$

Choose $X = 6$

$$(64)^{3} = \times$$
 $(16 = \times)$

5

Graph the Inverse of an Exponential Function

- a) State the inverse of $f(x) = 3^x$.
- **b)** Sketch the graph of the inverse. Identify the following characteristics of the inverse graph:
 - · the domain and range
 - the x-intercept, if it exists
 - the y-intercept, if it exists
 - · the equations of any asymptotes

To Find Inverse.

$$as f(x) = 3^{x}$$

$$X=39$$
 (Switch $X+y$)

$$y = \log_3 x$$
 (Solve for y) \rightarrow Express in logarithmic form

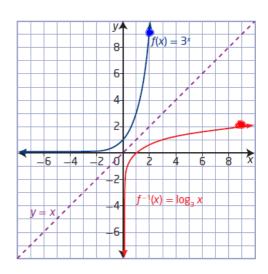
$$f(x)=3^{x} \longrightarrow f'(x)=\log_{3}x$$

- D: {x | X ∈ R }
- D'. {X \ x >0, X∈R}
- R: {yly>0,yeh}
- R'. {y\yER}
- x-int: none
- x-int: (1,0)
- · y-int: (0,1)
- y-int: none

· HA: y=0

VA: X=0

Solution


a) The inverse of $y = f(x) = 3^x$ is $x = 3^y$ or, expressed in logarithmic form, $y = \log_3 x$. Since the inverse is a function, it can be written in function notation as $f^{-1}(x) = \log_3 x$.

How do you know that $y = \log_3 x$ is a function?

b) Set up tables of values for both the exponential function, f(x), and its inverse, $f^{-1}(x)$. Plot the points and join them with a smooth curve.

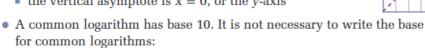
$f(x) = 3^x$		
X	У	
-3	<u>1</u> 27	
-2	<u>1</u>	
-1	<u>1</u> 3	
0	1	
1	3	
o 2	9	
3	27	

X	У	
<u>1</u> 27	-3	
<u>1</u>	-2	
<u>1</u> 3	-1	
1	0	
3	1	
6 9	2	
27	3	

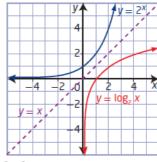
The graph of the inverse, $f^{-1}(x) = \log_3 x$, is a reflection of the graph

of $f(x) = 3^x$ about the line y = x. For $f^{-1}(x) = \log_3 x$,

- the domain is $\{x \mid x > 0, x \in R\}$ and the range is $\{y \mid y \in R\}$
- the x-intercept is 1
- there is no y-intercept
- the vertical asymptote, the *y*-axis, has equation x = 0; there is no horizontal asymptote


How do the characteristics of $f^{-1}(x) = \log_3 x$ compare to the characteristics of $f(x) = 3^x$?

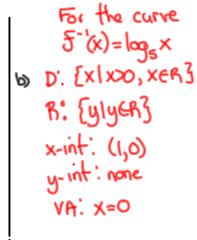
Key Ideas

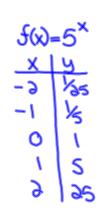

- A logarithm is an exponent.
- · Equations in exponential form can be written in logarithmic form and vice versa.

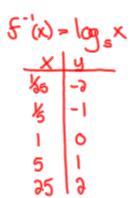
Exponential Form Logarithmic Form $x = c^y$ $y = \log_c x$

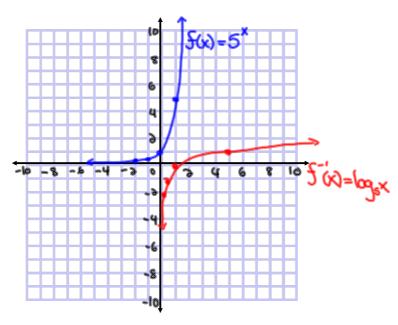
- The inverse of the exponential function $y = c^x$, c > 0, $c \ne 1$, is $x = c^y$ or, in logarithmic form, $y = \log_c x$. Conversely, the inverse of the logarithmic function $y = \log_c x$, c > 0, $c \ne 1$, is $x = \log_c y$ or, in exponential form, $y = c^x$.
- The graphs of an exponential function and its inverse logarithmic function are reflections of each other in the line y = x, as shown.
- For the logarithmic function $y = \log_c x$, c > 0, $c \neq 1$,
 - the domain is $\{x \mid x > 0, x \in R\}$
 - the range is $\{y \mid y \in R\}$
 - the x-intercept is 1
 - the vertical asymptote is x = 0, or the y-axis

Questions from Homework


- **8. a)** If $f(x) = 5^x$, state the equation of the inverse, $f^{-1}(x)$.
- a) Inverse: $f(x)=5^{x}$
- **b)** Sketch the graph of f(x) and its inverse. Identify the following characteristics of the inverse graph:


y=5^x


- the domain and range
- the x-intercept, if it exists
- the y-intercept, if it exists
- the equations of any asymptotes


 $y = \log_5 x$ $5^{-1} (x) = \log_5 x$

For the curve
$$5(x)=5^{x}$$
D: {x|xeh}
R: {y|y>0,yeh}
x-int: none
y-int: (0,1)
HA: y=0

- **17.** The growth of a new social networking site can be modelled by the exponential function $N(t) = 1.1^t$, where N is the number of users after t days.
 - a) Write the equation of the inverse.
 - b) How long will it take, to the nearest day, for the number of users to exceed 1 000 000?

a)
$$N(t) = 1.1^{t}$$

$$5(x) = 1.1^{x}$$

$$y = 1.1^{x}$$

$$x = 1.1^{9}$$

$$y = \log_{1.1}^{x}$$

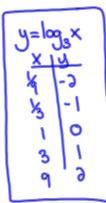
$$5^{-1} \otimes = \log_{1.1}^{x}$$

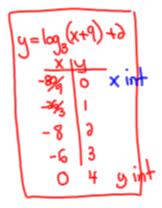
Transformations of Logarithmic Functions

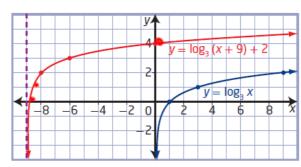
Focus on...

- explaining the effects of the parameters a, b, h, and k in $y = a \log_c (b(x h)) + k$ on the graph of $y = \log_c x$, where c > 1
- sketching the graph of a logarithmic function by applying a set of transformations to the graph of $y = \log_c x$, where c > 1, and stating the characteristics of the graph

Remember:


Parameter	Transformation
а	$(x, y) \rightarrow (x, ay)$
b	$(x, y) \rightarrow \left(\frac{x}{b}, y\right)$
h	$(x, y) \rightarrow (x + h, y)$
k	$(x, y) \rightarrow (x, y + k)$


Translations of a Logarithmic Function


- a) Use transformations to sketch the graph of the function $y = \log_3 (x + 9) + 2$.
- **b)** Identify the following characteristics of the graph of the function.
 - i) the equation of the asymptote
- ii) the domain and range
- iii) the y-intercept, if it exists
- iv) the x-intercept, if it exists

a)
$$y = \log_3(x+9) + \underline{\partial}$$

a=1 b=1 h=-9 K=0

- Translated 9 to the left and 2 up
- Mapping: $(x,y) \longrightarrow (x-9, y+2)$

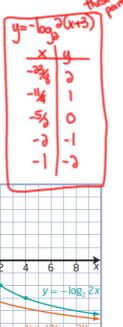
- b) Identify the following characteristics of the graph of the function.
 - i) the equation of the asymptote
- ii) the domain and range
- iii) the y-intercept, if it exists
- iv) the x-intercept, if it exists

Reflections, Stretches, and Translations of a Logarithmic Function

- a) Use transformations to sketch the graph of the function $y = -\log_2(2x + 6)$.
- $\boldsymbol{b}\boldsymbol{)}$ Identify the following characteristics of the graph of the function.
 - i) the equation of the asymptote
 - ii) the domain and range
 - iii) the y-intercept, if it exists
 - iv) the x-intercept, if it exists

a)
$$y = -\log_3(3x+6)^2$$
 factor
 $y = -\log_3(x+3)$
 $a = -1$ $b = 3$ $h = -3$ $k = 0$

b) (i)
$$VA: x = -3$$


(iii)
$$y-int$$
: (let $x=0$)

 $y=-log_{0}(3x+6)$
 $y=-log_{0}(3x+6)$

to sketch graph: (x,y) (1x-3,-1y+0)

S(x)=	: 9 _x
X	4
-9	1/4
- 1	る
0	١
1	6 4
9	14

Key Ideas

- To represent real-life situations, you may need to transform the basic logarithmic function $y = \log_b x$ by applying reflections, stretches, and translations. These transformations should be performed in the same manner as those applied to any other function.
- The effects of the parameters a, b, h, and k in $y = a \log_c (b(x h)) + k$ on the graph of the logarithmic function $y = \log_c x$ are shown below.

```
Vertically stretch by a factor of |a| about the x-axis. Reflect in the x-axis if a < 0. y = a \log_c (b(x - h)) + k

Horizontally stretch by a factor of \left|\frac{1}{b}\right| about the y-axis. Reflect in the y-axis if b < 0.
```

• Only parameter *h* changes the vertical asymptote and the domain. None of the parameters change the range.

Homework

Questions #1, 2, 4, 5, 8, 11 on page 389 - 391